75313

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Perturbations of differential equations retaining conserved quantities

ISBN/ISSN: 

ISSN 1995-0802

DOI: 

D10.1134/S1995080223090366

Наименование источника: 

  • Lobachevskii Journal of Mathematics

Обозначение и номер тома: 

Vol. 44, No. 9

Город: 

  • Москва

Издательство: 

  • Pleiades Publishing, Ltd.,

Год издания: 

2023

Страницы: 

3980–3987
Аннотация
The paper deals with perturbations of the equation that have a number of conservation laws. When a small term is added to the equation its conserved quantities usually decay at individual rates, a phenomenon known as a selective decay. These rates are described by the simple law using the conservation laws’ generating functions and the added term. Yet some perturbation may retain a specific quantity(s), such as energy, momentum and other physically important characteristics of solutions. We introduce a procedure for finding such perturbations and demonstrate it by examples including the KdV–Burgers equation and a system from magnetodynamics. Some interesting properties of solutions of such perturbed equations are revealed and discussed. DOI: 10.1134/

Библиографическая ссылка: 

Самохин А.В. Perturbations of differential equations retaining conserved quantities // Lobachevskii Journal of Mathematics. 2023. Vol. 44, No. 9. С. 3980–3987.