75183

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Contact Transformations in Theory of Frontal Oil Displacement

ISBN/ISSN: 

ISSN 1995-0802

DOI: 

10.1134/S1995080223090251

Наименование источника: 

  • Lobachevskii Journal of Mathematics

Обозначение и номер тома: 

Vol. 44, No. 9

Город: 

  • Kazan

Издательство: 

  • PLEIADES PUBLISHING Ltd.

Год издания: 

2023

Страницы: 

3976-3980
Аннотация
The paper deals with Barenblat’s model of non-stationary two-phase filtration of oil and water with active reagents. This model describes frontal It is described by the first order hyperbolic system of two nonlinear partial differential equations. We show that this system is equivalent to the symplectic Monge–Ampe` re equation. In the case of carbonized water this equation is contact equivalent to the linear wave equation. This gives us a possibility to construct exact multivalued solutions of Barenblat’s equations.

Библиографическая ссылка: 

Мухина С.С. Contact Transformations in Theory of Frontal Oil Displacement // Lobachevskii Journal of Mathematics. 2023. Vol. 44, No. 9. С. 3976-3980.