74982

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Interior of the Integral of a Set-Valued Mapping and Problems with a Linear Control System

ISBN/ISSN: 

0012-2661

DOI: 

10.1134/S0012266123080098

Наименование источника: 

  • Differential Equations

Обозначение и номер тома: 

Vol. 59, No. 8

Город: 

  • New York

Издательство: 

  • Pleades Publishing, Ltd

Год издания: 

2023

Страницы: 

1105-1116
Аннотация
The dependence of the radius of a ball centered at zero inscribed in the values of the integral of a set-valued mapping on the upper integration limit is studied. For some types of integrals, exact asymptotics of the radius with respect to the upper limit are found when the upper limit tends to zero. Examples of finding this radius are considered. The results obtained are used to derive new sufficient conditions for the uniformly continuous dependence of the minimum time and solution-point in the linear minimum time control problem on the initial data. We also consider applications in some algorithms with a reachability set of a linear control system.

Библиографическая ссылка: 

Балашов М.В. Interior of the Integral of a Set-Valued Mapping and Problems with a Linear Control System // Differential Equations. 2023. Vol. 59, No. 8. С. 1105-1116.