74456

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

The Lezanski – Polyak – Lojasiewicz inequality and the convergence of the gradient projection algorithm

ISBN/ISSN: 

1816-9791

DOI: 

10.18500/1816-9791-2023-23-1-4-10

Наименование источника: 

  • Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика

Обозначение и номер тома: 

Т. 23, вып. 1

Город: 

  • Саратов

Издательство: 

  • Саратовский университет

Год издания: 

2023

Страницы: 

4-10
Аннотация
We consider the Lezanski – Polyak – Lojasiewicz inequality for a real-analytic function on a real-analytic compact manifold without boundary in finite-dimensiona lEuclidea nspace. This inequality emerged in 1963 independently in works of three authors: Lezanski and Lojasiewicz from Poland and Polyak from the USSR. The inequality is appeared to be a very useful tool in the convergence analysis of the gradient methods, firstl yin unconstrained optimization and during the past few decades in problems of constrained optimization. Basically, it is applied for a smooth in a certain sense function on a smooth in a certain sense manifold. We propose the derivation of the inequality from the error bound condition of the power type on a compact real- analytic manifold. As an application, we prove the convergence of the gradient projection algorithm of a real analytic function on a real analytic compact manifold without boundary. Unlike known results, our proof gives explicit dependence of the error via parameters of the problem: the power in the error bound condition and the constant of proximal smoothness firs to fall .Her ewe significantl yus e atechnica lfac ttha t asmoot hcompac tmanifold without boundary is a proximally smooth set.

Библиографическая ссылка: 

Балашов М.В. The Lezanski – Polyak – Lojasiewicz inequality and the convergence of the gradient projection algorithm // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023. Т. 23, вып. 1. С. 4-10.