74259

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Methods for solving some problems of air traffic planning and regulation. PART II: Application of Deep Reinforcement Learning

ISBN/ISSN: 

1819-3161

DOI: 

10.25728/cs.2023.2.1

Наименование источника: 

  • Control Sciences

Обозначение и номер тома: 

№ 2

Город: 

  • Москва

Издательство: 

  • ИПУ РАН, ООО "Сенсидат-Плюс"

Год издания: 

2023

Страницы: 

2-14
Аннотация
Following part I of the survey, this paper considers the problems of improving the safety and efficiency of air traffic flows. The main challenge in conflict detection and resolution by traditional optimization methods is computation time: tens and even hundreds of seconds are required. However, this is not so much for response in real situations. Deep reinforcement learning has recently become widespread due to solving high-dimensional decision problems with nonlinearity in an acceptable time. Research works on the use of deep reinforcement learning in air traffic management have appeared in the last few years. Part II focuses on the application of this promising approach to the following problems: detecting and resolving aircraft conflicts, reducing the complexity of air traffic at the national or continental level (a large-scale problem), and increasing the efficiency of airport runways through the improved planning of aircraft landings.

Библиографическая ссылка: 

Кулида Е.Л., Лебедев В.Г. Methods for solving some problems of air traffic planning and regulation. PART II: Application of Deep Reinforcement Learning // Control Sciences. 2023. № 2. С. 2-14.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: