72901

Автор(ы): 

Автор(ов): 

5

Параметры публикации

Тип публикации: 

Доклад

Название: 

Comparative Study of Deep Learning Models for Automatic Coronary Stenosis Detection in X-ray Angiography

Электронная публикация: 

Да

DOI: 

10.51130/graphicon-2020-2-3-75

Наименование конференции: 

  • 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020, St.Petersburg)

Наименование источника: 

  • Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020, St.Petersburg)

Обозначение и номер тома: 

Ч.2

Город: 

  • Санкт-Петербург

Издательство: 

  • CEUR

Год издания: 

2020

Страницы: 

https://eprints.whiterose.ac.uk/176704/
Аннотация
The article explores the application of machine learning approach to detect both single-vessel and multivessel coronary artery disease from X-ray angiography. Since the interpretation of coronary angiography images requires interventional cardiologists to have considerable training, our study is aimed at analysing, training, and assessing the potential of the existing object detectors for classifying and detecting coronary artery stenosis using angiographic imaging series. 100 patients who underwent coronary angiography at the Research Institute for Complex Issues of Cardiovascular Diseases were retrospectively enrolledinthestudy.Toautomatethemedicaldataanalysis,weexaminedandcompared three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, FasterRCNN NASNet) with various architecture, network complexity, and a number of weights. To compare developed deep learning models, we used the mean Average Precision (mAP) metric, training time, and inference time. Testing results show that the training/inference time is directly proportional to the model complexity.Thus,Faster-RCNNNASNetdemonstratestheslowestinferencetime.Its meaninferencetimeperoneimagemadeup880ms.Intermsofaccuracy,FasterRCNN ResNet-50 V1 demonstrates the highest prediction accuracy. This model has reached the mAP metric of 0.92 on the validation dataset. SSD MobileNet V1 has demonstrated the best inference time with the inference rate of 23 frames per second.

Библиографическая ссылка: 

Данилов В.В., Гергет О.М., Клышников К.Ю., Овчаренко Е.А., Frandi A.F. Comparative Study of Deep Learning Models for Automatic Coronary Stenosis Detection in X-ray Angiography / Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020, St.Petersburg). СПб.: CEUR, 2020. Ч.2. С. https://eprints.whiterose.ac.uk/176704/.