72752

Автор(ы): 

Автор(ов): 

5

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Visualization System for Fire Detection in the Video Sequences

ISBN/ISSN: 

2079-3537

DOI: 

10.26583/sv.13.2.01

Наименование источника: 

  • Scientific Visualization

Обозначение и номер тома: 

Т.13, №2

Город: 

  • Москва

Издательство: 

  • ФГАОУВО "Национальный исследовательский ядерный университет "МИФИ"

Год издания: 

2021

Страницы: 

http://sv-journal.org/2021-2/01/
Аннотация
The paper deals with the analysis of the visual images obtained from fire detection systems. We review the existing approaches to the analysis of video surveillance data and pro-pose a tool for data labeling and visualization. The proposed solution for visual image analysis is based on a neural network (object detection technology). Recognition of hazard locations was carried out using the EfficientDet-D1 model. Video pre- and post-processing algorithms were implemented to improve visual image classification. The pre-processing was used to generate a frame preserving the features of objects that dynamically change over time. The post-processing combines the results of sequential detection of characteristic features on each frame, in particular, features of a smoke cloud. The results of the system operation are presented: visual image classification accuracy was 81%, while localization accuracy was 87%.

Библиографическая ссылка: 

Лаптев Н.В., Лаптев В.В., Гергет О.М., Кравченко А.А., Колпащиков Д.Ю. Visualization System for Fire Detection in the Video Sequences // Scientific Visualization. 2021. Т.13, №2. С. http://sv-journal.org/2021-2/01/.