71652

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Пленарный доклад

Название: 

Isospectral deformation of the reduced quasi-classical dual Yang-Mills equation and its Lagrangian extension

Наименование конференции: 

  • Modern Achievements in Symmetries of Differential Equations (Symmetry 2022)

Наименование источника: 

  • Book of Abstracts of the Modern Achievements in Symmetries of Differential Equations (Symmetry 2022)

Город: 

  • Nakhon Ratchasima, Thailand

Издательство: 

  • Suranaree University of Technology

Год издания: 

2022

Страницы: 

36-36
Аннотация
We derive a new four-dimensional partial differential equation with the isospectral Lax representation by shrinking the symmetry algebra of the reduced qua\-si-classical self-dual Yang--Mills equation and applying the technique of twisted extensions to the obtained Lie algebra. Then we find a recursion operator for symmetries of the new equation and construct a B{\"a}cklund transformation between this equation and the four-dimensional Mart{\'{\i}}nez Alonso--Shabat equation. Finally, we discuss integrability properties of the Lagrangian extension of the obtained equation.

Библиографическая ссылка: 

Морозов О.И. Isospectral deformation of the reduced quasi-classical dual Yang-Mills equation and its Lagrangian extension / Book of Abstracts of the Modern Achievements in Symmetries of Differential Equations (Symmetry 2022). Nakhon Ratchasima, Thailand: Suranaree University of Technology, 2022. С. 36-36.