70671

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Estimation of the Tail Index of PageRanks in Random Graphs

DOI: 

10.1007/978-3-031-23207-7_7

Наименование конференции: 

  • 25th International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2022)

Наименование источника: 

  • Lecture Note Computer Sciences (25th International Conference DCCN2022 Moscow)

Город: 

  • Германия, Cham

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

1-15 https://link.springer.com/chapter/10.1007/978-3-031-23207-7_7
Аннотация
Superstar nodes to which a large proportion of nodes attach in the evolving graphs are considered. We attract results of the extreme value theory regarding sums and maxima of non-stationary random length sequences to predict the tail index of the PageRanks and Max-linear models as influence measures of superstar nodes. To this end, the graphs are divided into mutually weakly dependent communities. Maxima and sums of the PageRanks over communities are used as weakly independent block-data. Tail indices of the block-maxima and block-sums and hence, of the PageRanks and the Max-linear models are found to be close to the minimum tail index of series of representative nodes taken from the communities. The graph evolution is provided by a linear preferential attachment. The tail indices are estimated by data of simulated and real temporal graphs.

Библиографическая ссылка: 

Маркович Н.М., Рыжов М.С. Estimation of the Tail Index of PageRanks in Random Graphs / Lecture Note Computer Sciences (25th International Conference DCCN2022 Moscow). Германия, Cham: Springer, 2023. С. 1-15 https://link.springer.com/chapter/10.1007/978-3-031-23207-7_7.