68144

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Web user identification based on browser fingerprints using machine learning methods

Электронная публикация: 

Да

DOI: 

10.1016/j.ifacol.2021.10.512

Наименование источника: 

  • IFAC-PapersOnLine

Обозначение и номер тома: 

V.54, N.13

Город: 

  • Москва

Издательство: 

  • Elsevier

Год издания: 

2021

Страницы: 

582-587
Аннотация
The article developed a method for identifying users on the network based on browser fingerprints using machine learning methods. The resulting method is a modification of the user identification method based on a digital footprint, which can be more efficient due to two components. First, the selection of attributes for a digital footprint is made from a limited set of attributes to form a user browser fingerprint. Secondly, the identification accuracy can be increased through the combined use of classification methods and the probabilistic-statistical approach. To check the successful operation of the method, a computational experiment is carried out on real data, which consists in solving the problem of classifying a user based on his browser fingerprint using the K nearest neighbors method.

Библиографическая ссылка: 

Саломатин А.А., Исхаков А.Ю., Исхакова А.О. Web user identification based on browser fingerprints using machine learning methods // IFAC-PapersOnLine. 2021. V.54, N.13. С. 582-587 .