67510

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Isospectral deformation of the reduced quasi-classical self-dual Yang--Mills equation

ISBN/ISSN: 

0926-2245

DOI: 

10.1016/j.difgeo.2021.101742

Наименование источника: 

  • Differential Geometry and its Applications

Обозначение и номер тома: 

Vol. 76

Город: 

  • Brussels

Издательство: 

  • Elsevier B.V.

Год издания: 

2021

Страницы: 

101742 (1-14);
Аннотация
We derive a new four-dimensional partial differential equation with the isospectral Lax representation by shrinking the symmetry algebra of the reduced quasi-classical self-dual Yang--Mills equation. Then we find a recursion operator for the obtained equation and construct B{\"a}cklund transformations between this equation and the reduced quasi-classical self-dual Yang--Mills equation as well as the four-dimensional Mart{\'{\i}}nez Alonso--Shabat equation. Finally, we construct extensions of the integrable hierarchies associated to the hyper-CR equation for Einstein--Weyl structures, the reduced qua\-si-classical self-dual Yang--Mills equation, the four-dimensional universal hierarchy equation, and the four-dimensional Mart{\'{\i}}nez Alonso--Shabat equation

Библиографическая ссылка: 

Морозов О.И. Isospectral deformation of the reduced quasi-classical self-dual Yang--Mills equation // Differential Geometry and its Applications. 2021. Vol. 76. С. 101742 (1-14);.