В книге дано систематическое изложение современных методов исследования нелинейных операторных уравнений, основанных на топологических и геометрических идеях. Книга охватывает следующие вопросы: методы доказательства разрешимости уравнений, условия единственности решений и оценки числа решений, изучение структуры множества решений, исследование приближенных методов решения уравнений, методы исследования уравнений с параметрами, изучение бифуркации решений, исследование задач с континуумами решений и др. Указаны приложения к нелинейным интегральным уравнениям, краевым задачам для обыкновенных дифференциальных уравнений и уравнений с частными производными, теории нелинейных колебаний.
Книга рассчитана на специалистов в области функционального анализа и его приложений.