60867

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On Monotonic Pattern in Periodic Boundary Solutions of Cylindrical and Spherical Kortweg–De Vries–Burgers Equations

DOI: 

10.3390/sym13020220

Наименование источника: 

  • Symmetry

Обозначение и номер тома: 

13 № 2

Город: 

  • Bazel, Switzerland

Издательство: 

  • MDPI AG

Год издания: 

2021

Страницы: 

https://www.mdpi.com/2073-8994/13/2/220
Аннотация
We studied, for the Kortweg–de Vries–Burgers equations on cylindrical and spherical waves, the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary. The regular profile at the vicinity of perturbation looks like a periodical chain of shock fronts with decreasing amplitudes. Further on, shock fronts become decaying smooth quasi-periodic oscillations. After the oscillations cease, the wave develops as a monotonic convex wave, terminated by a head shock of a constant height and equal velocity. This velocity depends on integral characteristics of a boundary condition and on spatial dimensions. In this paper the explicit asymptotic formulas for the monotonic part, the head shock and a median of the oscillating part are found.

Библиографическая ссылка: 

Самохин А.В. On Monotonic Pattern in Periodic Boundary Solutions of Cylindrical and Spherical Kortweg–De Vries–Burgers Equations // Symmetry. 2021. 13 № 2. С. https://www.mdpi.com/2073-8994/13/2/220.