60436

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Formation of Sawtooth Wavesfor Cylindrical and Spherical Kortweg-de Vries-Burgers Equations

Электронная публикация: 

Да

DOI: 

10.20944/preprints202012.0579.v

Наименование источника: 

  • Preprints.org

Город: 

  • Берн, Швейцария

Издательство: 

  • Multidisciplinary Digital Publishing Institute (MDPI)

Год издания: 

2020

Страницы: 

https://www.preprints.org/manuscript/202012.0579/v1
Аннотация
For the KdV-Burgers equations on cylindrical and spherical waves the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary is studied. The equations describe a medium which is both dissipative and dispersive. Symmetries, invariant solutions and conservation laws are investigated. For an appropriate combination of dispersion and dissipation the asymptotic profile looks like a periodical chain of shock fronts with a decreasing amplitude (sawtooth waves). The development of such a profile is preceded by a head shock of a constant height and equal velocity which depends on spatial dimension as well as on integral characteristics of boundary condition; an explicit asymptotic for this head shock and a median of the oscillating part is found.

Библиографическая ссылка: 

Самохин А.В. Formation of Sawtooth Wavesfor Cylindrical and Spherical Kortweg-de Vries-Burgers Equations / Preprints.org. Берн, Швейцария: Multidisciplinary Digital Publishing Institute (MDPI), 2020. С. https://www.preprints.org/manuscript/202012.0579/v1.