60431

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On periodic boundary solutions for cylindrical and spherical KdV-Burgers equations

Электронная публикация: 

Да

Наименование источника: 

  • arXiv.org > nlin > arXiv:Nonlinear Sciences > Pattern Formation and Solitons

Обозначение и номер тома: 

arXiv:2011.14189 [nlin.PS]

Город: 

  • Cornell, UK

Издательство: 

  • Cornell University

Год издания: 

2020

Страницы: 

https://arxiv.org/abs/2011.14189
Аннотация
For the KdV-Burgers equations for cylindrical and spherical waves the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary is studied. The equation describes a medium which is both dissipative and dispersive. For an appropriate combination of dispersion and dissipation the asymptotic profile looks like a periodical chain of shock fronts with a decreasing amplitude (sawtooth waves). The development of such a profile is preceded by a head shock of a constant height and equal velocity which depends on spatial dimension as well as on integral characteristics of boundary condition; an explicit asymptotic for this head shock is found.

Библиографическая ссылка: 

Самохин А.В. On periodic boundary solutions for cylindrical and spherical KdV-Burgers equations / arXiv.org > nlin > arXiv:Nonlinear Sciences > Pattern Formation and Solitons. Cornell, UK: Cornell University, 2020. arXiv:2011.14189 [nlin.PS]. С. https://arxiv.org/abs/2011.14189.