60063

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set

ISBN/ISSN: 

0001-4346

DOI: 

10.1134/S0001434620110024

Наименование источника: 

  • Mathematical Notes

Обозначение и номер тома: 

Vol.108, No. 5-6

Город: 

  • Москва

Издательство: 

  • Pleiades Publishing, Ltd

Год издания: 

2020

Страницы: 

643-651
Аннотация
Let a weakly convex function (in the general case, nonconvex and nonsmooth) satisfy the quadratic growth condition. It is proved that the gradient projection method for minimizing such a function on a set converges with linear rate on a proximally smooth (nonconvex) set of special form (for example, on a smooth manifold), provided that the constant of weak convexity of the function is less than the constant in the quadratic growth condition and the constant of proximal smoothness for the set is sufficiently large. The connection between the quadratic growth condition on the function and other conditions is discussed.

Библиографическая ссылка: 

Балашов М.В. On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set // Mathematical Notes. 2020. Vol.108, No. 5-6. С. 643-651.