59926

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Classification of observable 3D moving object by their kinematic characteristics by deep convolution neural network

Электронная публикация: 

Да

ISBN/ISSN: 

978-5-209-10386-8

Наименование конференции: 

  • 5th International Conference on Stoсhastic Methods 2020

Наименование источника: 

  • Proceedings of the 5th International Conference on Stochastic Methods (ICSM-5, 2020)

Город: 

  • Москва

Издательство: 

  • РУДН

Год издания: 

2020

Страницы: 

326-330
Аннотация
In this paper we demonstrate an approach to using a neural network for identifying observable 3D moving objects by their kinematic characteristics. Only coordinate measurements are used to identify an object. We suggest ResNet-like architecture (8 blocks and 283 469 learning parameters). Our solve good enough defines 13 classes of trajectories (12 object classes and 1 class "not trajectories"). We achieved 0:84 % correct answer on the F1 score on the only observed object.

Библиографическая ссылка: 

Костючек М.И., Макаренко А.В. Classification of observable 3D moving object by their kinematic characteristics by deep convolution neural network / Proceedings of the 5th International Conference on Stochastic Methods (ICSM-5, 2020). М.: РУДН, 2020. С. 326-330.