58983

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On Higher Order Structures in Thermodynamics

ISBN/ISSN: 

1099-4300

DOI: 

10.3390/e22101147

Наименование источника: 

  • Entropy

Обозначение и номер тома: 

Vol. 22, Iss. 10

Город: 

  • Basel, Швейцария

Издательство: 

  • MDPI

Год издания: 

2020

Страницы: 

1147 (1-8)
Аннотация
We present the development of the approach to thermodynamics based on measurement. First of all, we recall that considering classical thermodynamics as a theory of measurement of extensive variables one gets the description of thermodynamic states as Legendrian or Lagrangian manifolds representing the average of measurable quantities and extremal measures. Secondly, the variance of random vectors induces the Riemannian structures on the corresponding manifolds. Computing higher order central moments, one drives to the corresponding higher order structures, namely the cubic and the fourth order forms. The cubic form is responsible for the skewness of the extremal distribution. The condition for it to be zero gives us so-called symmetric processes. The positivity of the fourth order structure gives us an additional requirement to thermodynamic state.

Библиографическая ссылка: 

Лычагин В.В., Рооп М.Д. On Higher Order Structures in Thermodynamics // Entropy. 2020. Vol. 22, Iss. 10. С. 1147 (1-8).