В настоящее время не существует оптимального метода построения результирующего ранжирования, известного как медиана Кемени-Снелла, по матричному критерию между упорядочениями объектов экспертами, представленными матрицами бинарных отношений на множестве пар объектов. Однако задачу построения результирующего ранжирования по матричному критерию между упорядочениями объектов экспертами, представленными матрицами бинарных отношений на множестве пар объектов, можно свести к эквивалентной оптимизационной задаче, если ранжирования объектов пред-ставить в ранговой шкале измерения. В этом случае в качестве критерия оптимальности выступает расстояние между ранжированиями объектов, представленными в виде векторных ранговых оценок, в том числе и с учётом оценок объектов со связанными рангами. В статье показано, что введённые расстояния между ранжированиями объектов в ранговой шкале удовлетворяют традиционным аксиомам метрического пространства. Обоснованность перехода от постановки задачи построения медианы Кемени-Снелла по матричному критерию к постановке задачи по критерию близости между ранжированиями в ранговой шкале связана с тем, что между ранжированиями, представленными матрицами бинарных отношений на множестве пар объектов и ранжированиями в ранговой шкале, как показано в данной статье, существует взаимнооднозначное соответствие.