52971

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method

ISBN/ISSN: 

1607-1627

Наименование источника: 

  • AUTOMATION AND REMOTE CONTROL

Обозначение и номер тома: 

Vol. 80, No. 9

Город: 

  • New York, USA

Издательство: 

  • PLEIADES PUBLISHING Ltd.

Год издания: 

2019

Страницы: 

1607–1627
Аннотация
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.

Библиографическая ссылка: 

Назин А.В., Немировский А.С., Цыбаков А.Б., Юдицкий А.Б. Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method // AUTOMATION AND REMOTE CONTROL. 2019. Vol. 80, No. 9. С. 1607–1627.

Публикация имеет версию на другом языке: 

Да

Связь с публикацией: