Автор(ы): Назин А. В. (ИПУ РАН, Лаборатория 07)Немировский А. С. (?)Цыбаков А. Б. (?)Юдицкий А. Б. (?)Автор(ов): 4 Параметры публикацииТип публикации: Статья в журнале/сборникеНазвание: Algorithms of Robust Stochastic Optimization Based on Mirror Descent MethodISBN/ISSN: 1607-1627Наименование источника: AUTOMATION AND REMOTE CONTROLОбозначение и номер тома: Vol. 80, No. 9Город: New York, USAИздательство: PLEIADES PUBLISHING Ltd.Год издания: 2019Страницы: 1607–1627 АннотацияWe propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed. Библиографическая ссылка: Назин А.В., Немировский А.С., Цыбаков А.Б., Юдицкий А.Б. Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method // AUTOMATION AND REMOTE CONTROL. 2019. Vol. 80, No. 9. С. 1607–1627.