Сформирован набор из 43 признаков цифровых изображений и проведена оценка информативности отдельных групп признаков применительно к стегоанализу классических стеганографических алгоритмов. В качестве признаков выбраны различные статистические характеристики изображений в пространственном и частотном домене. Для подготовки обучающей и тестовой выборок изображений использованы три стеганографических алгоритма: F5, JSteg и PM1. Стегоанализ проведен с помощью наивного байесовского классификатора. Показано, что использование полного набора признаков приводит к меньшей точности классификации по сравнению с применением отдельных групп признаков, входящих в полный набор. Дополнительно проведено исследование влияния искажений нестеганографического характера на точность стегоанализа. Для этого в тестовую выборку включен набор изображений, не содержащих вложений, но обработанных с помощью приложения Prisma, которое имитирует стиль картин известных художников. Установлено, что такая обработка позволяет скомпрометировать точность выявления « чистых » изображений. Среднее число ошибок, допущенных при классификации таких изображений, составляет порядка 40 %. Предложен новый подход к стеганографическому встраиванию информации в цифровые изображения, который заключается в имитации нестеганографических искажений. Результаты проведенного исследования планируется использовать для построения стойких стеганографических алгоритмов на основе произвольных стеганографических примитивов, в том числе с применением предложенного подхода.