50230

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Self-stabilizing mobile medical robots scattering algorithm

ISBN/ISSN: 

2075-809X

DOI: 

10.14529/mmph180305

Наименование источника: 

  • Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика

Обозначение и номер тома: 

Т. 10 № 3

Город: 

  • Челябинск

Издательство: 

  • Южно-Уральский государственный университет (национальный исследовательский университет)

Год издания: 

2018

Страницы: 

41-51
Аннотация
The paper is devoted to the possibility of determinate and probabilistic scattering under various assumptions of the state of the locations of medical robots in both fault-tolerance and vulnerable environments. The topicality of the work is due to the need to place medical robots in the coordinate space having disjoint polygons (robot bodies) which is absolutely unacceptable in the case of medical applications. As a limitation it is assumed that the medical robot sees its nearest neighbors and local monitor of multiplicity is functioning, which can determine the situation when robots occupy intersecting spaces. We propose a probabilistic scattering algorithm which describes the initial states of medical robots and the proper transient state algorithm which can predict the movement of robots to a location where they can intersect. It is shown, that when using the algorithm the states and motion algorithms can be estimated in a fault-tolerance (robots do not fail and the medium is stationary) and vulnerable (the robot may fail and the byzantine problem is not solved, the environment changes faster than the robot can react) environments. The estimates for the computational complexity of the algorithm working without the mission planner are given.

Библиографическая ссылка: 

Melekhova O.N., Мещеряков Р.В. Self-stabilizing mobile medical robots scattering algorithm // Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика. 2018. Т. 10 № 3. С. 41-51.