49978

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Geometry of quadratic maps via convex relaxation

Наименование источника: 

  • arXiv.org

Обозначение и номер тома: 

arXiv e-print 1810.00896

Город: 

  • Cornell

Издательство: 

  • Cornell University

Год издания: 

2018

Страницы: 

https://arxiv.org/pdf/1810.00896.pdf
Аннотация
We consider several basic questions pertaining to the geometry of image of a general quadratic map. In general the image of a quadratic map is non-convex, although there are several known classes of quadratic maps when the image is convex. Remarkably, even when the image is not convex it often exhibits hidden convexity – a surprising efficiency of convex relaxation to address various geometric questions by reformulating them in terms of convex optimization problems. In this paper we employ this strategy and put forward several algorithms that solve the following problems pertaining to the image: verify if a given point does not belong to the image; find the boundary point of the image lying in a particular direction; stochastically check if the image is convex, and if it is not, find a maximal convex subset of the image. Proposed algorithms are implemented in the form of an open-source MATLAB library CAQM, which accompanies the paper. Our results can be used for various problems of discrete optimization, uncertainty analysis, physical applications, and study of power flow equations.

Библиографическая ссылка: 

Дымарский А.Я., Грязина Е.Н., Volodin S., Поляк Б.Т. Geometry of quadratic maps via convex relaxation / arXiv.org. Cornell: Cornell University, 2018. arXiv e-print 1810.00896. С. https://arxiv.org/pdf/1810.00896.pdf.