47182

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Integrability properties of some equations obtained by symmetry reductions

ISBN/ISSN: 

1402-9251

DOI: 

10.1080/14029251.2015.1023582

Наименование источника: 

  • Journal of Nonlinear Mathematical Physics

Обозначение и номер тома: 

Vol. 22, № 2

Город: 

  • Швеция

Издательство: 

  • Luleaa University of Technology

Год издания: 

2015

Страницы: 

210-232
Аннотация
In our recent paper [1], we gave a complete description of symmetry reduction of four Lax-integrable (i.e., possessing a zero-curvature representation with a non-removable parameter) 3-dimensional equations. Here we study the behavior of the integrability features of the initial equations under the reduction procedure. We show that the ZCRs are transformed to nonlinear differential coverings of the resulting 2D-systems similar to the one found for the Gibbons-Tsarev equation in [17]. Using these coverings we construct infinite series of (nonlocal) conservation laws and prove their nontriviality. We also show that the recursion operators are not preserved under reductions.

Библиографическая ссылка: 

Baran H., Морозов О.И., Vojcak P., Красильщик И.С. Integrability properties of some equations obtained by symmetry reductions // Journal of Nonlinear Mathematical Physics. 2015. Vol. 22, № 2. С. 210-232.