47129

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Об аналитическом методе решения задачи Коши системы двух квазилинейных гиперболических уравнений

ISBN/ISSN: 

2079-0619

DOI: 

10.26467/2079-0619-2018-21-2-51-58

Наименование источника: 

  • Научный вестник МГТУ ГА

Обозначение и номер тома: 

Т. 21, № 02

Город: 

  • Москва

Издательство: 

  • ИД Академии имени Н.Е. Жуковского

Год издания: 

2018

Страницы: 

51-58
Аннотация
Проводится анализ применимости метода «ручного» интегрирования В.В. Лычагина к системам двух квазилинейных гиперболических дифференциальных уравнений первого порядка с двумя независимыми переменными t, х и двумя неизвестными функциями u = u(t, х) и v = v(t, х). Рассматриваемые системы являются частным случаем систем Якоби, для которых В.В. Лычагиным был предложен аналитический способ решения начально-краевой задачи. Каждому из уравнений системы ставится в соответствие дифференциальная 2-форма на четырехмерном пространстве. Эта пара форм однозначно определяет поле линейных операторов, которое для гиперболических уравнений порождает структуру почти произведения. Это означает, что касательное пространство четырехмерного пространства в каждой точке является прямой суммой двумерных собственных подпространств данного оператора и, таким образом, определены два двумерных распределения. Если хотя бы одно из этих распределений вполне интегрируемо, то можно построить векторное поле, сдвиги вдоль которого сохраняют решение исходной системы уравнений. Таким образом, решение начально-краевой задачи для рассматриваемой системы может быть получено аналитически с помощью сдвига начальной кривой вдоль траекторий данного векторного поля. В качестве примера рассмотрена система уравнений Бакли Леверетта, описывающая процесс нелинейной одномерной двухфазной фильтрации в пористой среде. Для построения решения задачи Коши выбирается кривая начальных данных; график решения системы Бакли Леверетта получается сдвигом этой кривой вдоль траекторий векторного поля (это векторное поле определено с точностью до умножения на функцию). Сечения компоненты этого графика для различных моментов времени представлены на рисунке. На графике видно, что в какой-то момент времени решение перестает быть однозначным. В этот момент у решения происходит разрыв и возникает ударная волна.

Библиографическая ссылка: 

Горинов А.А. Об аналитическом методе решения задачи Коши системы двух квазилинейных гиперболических уравнений / Научный вестник МГТУ ГА. М.: ИД Академии имени Н.Е. Жуковского, 2018. Т. 21, № 02. С. 51-58.