46249

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces

ISBN/ISSN: 

978-3-319-73638-9

DOI: 

10.1007/978-3-319-73639-6

Наименование источника: 

  • Springer Proceeding in Mathematics & Statistics

Обозначение и номер тома: 

Vol. 222

Город: 

  • Cham, Switzerland

Издательство: 

  • Springer International Publishing

Год издания: 

2018

Страницы: 

135-156
Аннотация
We present a survey on generic singularities of geodesic flows in smooth signature changing metrics (often called pseudo-Riemannian) in dimension 2. Generically, a pseudo-Riemannian metric on a 2-manifold $S$ changes its signature (degenerates) along a curve $S_0$, which locally separates $S$ into a Riemannian ($R$) and a Lorentzian ($L$) domain. The geodesic flow does not have singularities over $R$ and $L$, and for any point $q \in R \cup L$ and every tangential direction $p$ there exists a unique geodesic passing through the point $q$ with the direction $p$. On the contrary, geodesics cannot pass through a point $q \in S_0$ in arbitrary tangential directions, but only in some admissible directions; the number of admissible directions is 1 or 2 or 3. We study this phenomenon and the local properties of geodesics near $q \in S_0$.

Библиографическая ссылка: 

Павлова Н.Г., Ремизов А.О. A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces / Springer Proceeding in Mathematics & Statistics. Cham, Switzerland: Springer International Publishing, 2018. Vol. 222. С. 135-156.