44735

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Modelling Solutions to the Kdv-Burgers Equation in the Case of Non-homogeneous Dissipative Media

Электронная публикация: 

Да

ISBN/ISSN: 

arXiv:1707.03649 [nlin.PS]

Наименование источника: 

  • arXiv:1707.03649 [nlin.PS]

Город: 

  • Cornell

Издательство: 

  • Cornell university library

Год издания: 

2017

Страницы: 

1-7
Аннотация
We study the behavior of the soliton which, while moving in non-dissipative medium encounters a barrier with finite dissipation. The modelling included the case of a finite dissipative layer similar to a wave passing through the air-glass-air as well as a wave passing from a non-dissipative layer into a dissipative one (similar to the passage of light from air to water). The dissipation predictably results in reducing the soliton amplitude/velocity, but some new effects occur in the case of finite barrier on the soliton path: after the wave leaves the dissipative barrier it retains a soliton form, yet a reflection wave arises as small and quasi-harmonic oscillations (a breather). The breather spreads faster than the soliton as moves through the barrier.

Библиографическая ссылка: 

Самохин А.В. Modelling Solutions to the Kdv-Burgers Equation in the Case of Non-homogeneous Dissipative Media / arXiv:1707.03649 [nlin.PS]. Cornell: Cornell university library, 2017. С. 1-7.