42808

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Nonparametric Analysis of Extremes on Web Graphs: PageRank versus Max-Linear Model

ISBN/ISSN: 

978-3-339-66835-2

Наименование источника: 

  • Communications in Computer and Information Science

Обозначение и номер тома: 

CCIS, Volume 700

Город: 

  • Moscow

Издательство: 

  • Springer

Год издания: 

2017

Страницы: 

13-26
Аннотация
We analyze the cluster structure in large networks by means of clusters of exceedances regarding the influence characteristics of nodes. As the latter characteristics we use PageRank and the Max-Linear model and compare their distributions and dependence structure. Due to the heaviness of tail and dependence of PageRank and Max-Linear model observations, the influence indices appear by clusters or conglomerates of nodes grouped around influential nodes. The mean size of such clusters is determined by a so called extremal index. It is related to the tail index that indicates the heaviness of the distribution tail. We consider graphs of Web pages and partition them into clusters of nodes by their influence.

Библиографическая ссылка: 

Маркович Н.М., Рыжов М.С., Krieger U. R. Nonparametric Analysis of Extremes on Web Graphs: PageRank versus Max-Linear Model // Communications in Computer and Information Science. 2017. CCIS, Volume 700. С. 13-26.