41571

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Пленарный доклад

Название: 

Quadratic transformations: feasibility and convexity

Наименование конференции: 

  • Workshop "Optimization Without Borders" (Les Houches, France, 2016)

Наименование источника: 

  • Materials of the Workshop "Optimization Without Borders" (Les Houches, France, 2016)

Город: 

  • Les Houches

Издательство: 

  • LJK UJF

Год издания: 

2016

Страницы: 

1-24
Аннотация
We investigate the “image convexity” property. That is, we consider the image of the space of variables under quadratic map defined by power flow equations (the feasibility domain). If the image is convex, then original optimization problem has nice properties, for instance, it admits zero duality gap and convex optimization tools can be applied. There are several classes of quadratic maps representing the image convexity. We aim to discover similar structure and to obtain convexity or nonconvexity certificates for the individual quadratic transformation. We also provide the numerical algorithms exploiting convex relaxation of quadratic mappings for checking convexity.

Библиографическая ссылка: 

Поляк Б.Т., Грязина Е.Н., Щербаков П.С. Quadratic transformations: feasibility and convexity / Materials of the Workshop "Optimization Without Borders" (Les Houches, France, 2016). Les Houches: LJK UJF, 2016. С. 1-24.