39396

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Reducing quasilinear systems to block triangular form

ISBN/ISSN: 

1064-5616

DOI: 

10.1070/SM2013v204n03ABEH004307

Наименование источника: 

  • Sbornik: Mathematics

Обозначение и номер тома: 

204:3

Город: 

  • Philadelphia

Издательство: 

  • Turpion Limited

Год издания: 

2013

Страницы: 

438-462
Аннотация
The paper is concerned with systems of n quasilinear partial differential equations of the first order with 2 independent variables. Using a geometric formalism for such equations, which goes back to Riemann, it is possible to assign a field of linear operators on an appropriate vector bundle to this type of quasilinear system. Several tests for a quasilinear system to be reducible to triangular or block triangular form are obtained in terms of this field; they supplement well known results on diagonalization and block diagonalization due to Haantjes and Bogoyavlenskij.

Библиографическая ссылка: 

Туницкий Д.В. Reducing quasilinear systems to block triangular form // Sbornik: Mathematics. 2013. 204:3. С. 438-462.