38685

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Infinitely many nonlocal conservation laws for the ABC equation with A+B+C≠0

ISBN/ISSN: 

0944-2669

DOI: 

10.1007/s00526-016-1061-0

Наименование источника: 

  • Calculus of Variations and Partial Differential Equations

Обозначение и номер тома: 

Vol. 55, № 5

Город: 

  • Berlin

Издательство: 

  • Springer-Link

Год издания: 

2016

Страницы: 

1-12, http://link.springer.com/article/10.1007/s00526-016-1061-0
Аннотация
We construct an infinite hierarchy of nonlocal conservation laws for the ABC equation Au_tu_{xy}+Bu_xu_{ty}+Cu_yu_{tx}=0, where A, B, C are nonzero constants and A+B+C≠0, using a nonisospectral Lax pair. As a byproduct, we present new coverings for the equation in question. The method of proof of nontriviality of the conservation laws under study is quite general and can be applied to many other integrable multidimensional systems.

Библиографическая ссылка: 

Красильщик И.С., Sergyeyev A., Морозов О.И. Infinitely many nonlocal conservation laws for the ABC equation with A+B+C≠0 // Calculus of Variations and Partial Differential Equations. 2016. Vol. 55, № 5 . С. 1-12, http://link.springer.com/article/10.1007/s00526-016-1061-0.