Исследования переходных режимов в линейных системах при ненулевых начальных условиях были начаты еще в 1948 г. в пионерской работе А.А. Фельдбаума [1]. Однако затем эта линия исследований не получила должного развития; под переходными процессами в основном понимались реакции системы на единичный скачок при нулевых начальных условиях. Существенным прорывом стала статья Р.Н. Измайлова [2], где показана неизбежность больших отклонений траектории от нуля, если полюса замкнутой системы сильно сдвинуты в левую полуплоскость комплексной плоскости.
В статье продолжено изучение этого явления при ненулевых начальных условиях, оценена более точно величина всплеска и показано, что эффект больших отклонений возникает и при других расположениях полюсов. Оценивается и верхняя граница для отклонений с помощью техники линейных матричных неравенств. Этот же подход предлагается для уменьшения величины отклонений при стабилизации системы с помощью линейной обратной связи. Исследуются родственные задачи анализа переходного режима при нулевых начальных условиях и внешних возмущениях (единичном скачке или гармонических).