28917

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Доклад

Название: 

Application of the Mirror Descent Method to Minimize Average Loss Coming by a Poisson Flow

Электронная публикация: 

Да

ISBN/ISSN: 

978-3-9524269-2-0

Наименование конференции: 

  • The 13th European Control Conference (ECC2014) (Strasbourg, France, 2014)

Наименование источника: 

  • Proceedings of the 13th European Control Conference (ECC 2014, Strasbourg, France)

Город: 

  • Strasbourg

Издательство: 

  • EUCA

Год издания: 

2014

Страницы: 

2194-2197
Аннотация
We treat a convex problem to minimize mean loss function for a stochastic system operating in continuous time. The losses on time horizon $T$ arise at the jump times of a Poisson process with intensity being an unknown random process. The oracle gives the randomly noised gradients of the loss function; the noises are additive, unbiased, with the bounded dual norm in mean square sense. The goal consists in minimizing the mean integral loss over a given convex compact set in $\mathbb{R}^N$. We propose a mirror descent algorithm and prove an explicit upper bound for the mean integral loss regret. The bound is of type $C\sqrt{T}$ with an explicit constant $C$. Finally, we describe an example of optimization for a server processing a stream of incoming requests, and we discuss simulation results.

Библиографическая ссылка: 

Назин А.В., Анулова С.В., Тремба А.А. Application of the Mirror Descent Method to Minimize Average Loss Coming by a Poisson Flow / Proceedings of the 13th European Control Conference (ECC 2014, Strasbourg, France). Strasbourg: EUCA, 2014. С. 2194-2197.