28869

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Доклад

Название: 

On an extension of homogeneity notion for differential inclusions

Наименование конференции: 

  • 12th European Control Conference (ECC-13, Zurich, Switzerland, 2013)

Наименование источника: 

  • Proceedings of the 12th European Control Conference (ECC-13, Zurich, Switzerland, 2013)

Город: 

  • Zürich

Издательство: 

  • IEEE Press

Год издания: 

2013

Страницы: 

2204-2209
Аннотация
The notion of geometric homogeneity is extended for differential inclusions. This kind of homogeneity provides the most advanced coordinate-free framework for analysis and synthesis of nonlinear discontinuous systems. Theorem of L. Rosier [1] on a homogeneous Lyapunov function existence for homogeneous differential inclusions is presented. An extension of the result of Bhat and Bernstein [2] about the global asymptotic stability of a system admitting a strictly positively invariant compact set is also proved.

Библиографическая ссылка: 

Bernuau E., Efimov D., Perruquetti W., Поляков А.Е. On an extension of homogeneity notion for differential inclusions / Proceedings of the 12th European Control Conference (ECC-13, Zurich, Switzerland, 2013). Zürich: IEEE Press, 2013. С. 2204-2209.