25635

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

The forest consensus theorem and asymptotic properties of coordination protocols

Наименование конференции: 

  • 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems (Rhine-Moselle-Hall, Koblenz, Germany, 2013)

Наименование источника: 

  • Preprints of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems (Rhine-Moselle-Hall, Koblenz, Germany, 2013)

Город: 

  • Koblenz, Germany

Издательство: 

  • IFAC

Год издания: 

2013

Страницы: 

95-101
Аннотация
We show that the final state vector of the continuous-time consensus protocol with an arbitrary communication digraph is obtained by multiplying the eigenprojection of the Laplacian matrix of the model by the vector of initial states. Furthermore, the eigenprojection coincides with the stochastic matrix of maximum out-forests of the weighted communication digraph. These statements make the forest consensus theorem. A similar result for DeGroot’s iterative pooling model requires the Ces`aro (time-average) limit in the general case. The forest consensus theorem generalizes the well-known spanning arborescence criterion of achieving consensus. Its field of application is the analysis of consensus algorithms.

Библиографическая ссылка: 

Чеботарев П.Ю., Агаев Р.П. The forest consensus theorem and asymptotic properties of coordination protocols / Preprints of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems (Rhine-Moselle-Hall, Koblenz, Germany, 2013). Koblenz, Germany: IFAC, 2013. С. 95-101.