Two types of nonlinear control algorithms are presented for uncertain linear plants. Controllers of the first type are stabilizing polynomial feedbacks that allow to adjust a guaranteed convergence time of system trajectories into a prespecified neighborhood of the origin independently on initial conditions. The control design procedure uses block control principles and finite-time attractivity properties of polynomial feedbacks. Controllers of the second type are modifications of the second order sliding mode control algorithms. They provide global finite-time stability of the closed-loop system and allow to adjust a guaranteed settling time independently on initial conditions. Control algorithms are presented for both single-input and multi-input systems. Theoretical results are supported by numerical simulations.