В работе рассматриваются проблемы симплектической и метрической классификации рациональных функций многих переменных. Основной идеей в построении этих классификаций является применение методов дифференциальной геометрии и геометрической теории пространств джетов. Именно, рассматривается действие групп не на функциях, а на пространстве бесконечных джетов, что позволяет найти поля дифференциальных инвариантов этих групп. Доказывается, что соотношения между базисными дифференциальными инвариантами и их производными однозначно задают орбиту соответствующей функции.