1669

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Maximum Entropy Wave Functions

ISBN/ISSN: 

1995-0802

Наименование источника: 

  • Lobachevskii Journal of Mathematics

Обозначение и номер тома: 

Т. 23

Город: 

  • США

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2006

Страницы: 

29-56
Аннотация
Аннотация: In this paper we use the classical Maximum Entropy principle to define maximum entropy wave functions. These are wave functions that maximize the entropy among all wave functions satisfying a finite set of constraints in the form of expectation values. This lead to a nonlinear equation for the wave function that reduce to the usual stationary Schrödinger equation if the energy is the only constraint and the value of the constraint is an eigenvalue. We discuss the extension of the thermodynamical formalism to this case and apply our general formalism to several simple quantum systems, the two-level atom, the particle in a box, the free particle and the Harmonic Oscillator and compare with the results obtained by applying the usual von Neumann quantum statistical method to the same systems.

Библиографическая ссылка: 

Jakobsen P. K., Лычагин В.В. Maximum Entropy Wave Functions // Lobachevskii Journal of Mathematics. 2006. Т. 23. С. 29-56.