
Estimating Maximum Resource Load for

Resource-Constrained Project Scheduling Problem

Alexander Lazarev
Moscow State University,

National Research University Higher School of Economics,
Moscow Institute for Physics and Technology,

Institute of Control Sciences
65 Profsoyuznaya street,
117997 Moscow, Russia

jobmath@mail.ru

German Tarasov
Institute of Control Sciences
Moscow State University
GSP-1, Leninskie Gory,
100109 Moscow, Russia

gv.tarasov@physics.msu.ru

Dmitry Arkhipov
ISAE-SUPAERO

10, avenue Edouard-Belin,
Toulouse, France,

Institute of Control Sciences
65 Profsoyuznaya street,
117997 Moscow, Russia
miptrafter@gmail.com

Abstract

This paper focuses on estimating maximum resource loads in Resource-
Constrained Project Scheduling Problem (RCPSP). We examine a vari-
ant of vector sum problem with fractions: considering preemptions al-
lowed, determine what part of each of n jobs should be accomplished
in order to minimize sum of squares of non-consumed amounts of re-
sources, taking into account the resource constraints along with mini-
mizing the number of preemptions. We prove that in case of 2 resources,
the optimal solution contains only 2 or less preemptions, and present
two polynomial algorithms of finding such solution with time complexi-
ties of O(n2) operations. We also present an investigation of the general
case of arbitrary number of resources.

1 Introduction

Resource-Constrained Project Scheduling Problem (RCPSP) is one of the core problems of scheduling theory. It
has been widely explored throughout the last years. RCPSP is NP-hard in the strong sense [Garey et al., 1975],
which means no exact approach to it may find a solution in polynomial time. The exact approaches to RCPSP

Copyright c⃝ by the paper’s authors. Copying permitted for private and academic purposes.

In: Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V.U. Malkova, M.A. Posypkin (eds.): Proceedings of
the OPTIMA-2017 Conference, Petrovac, Montenegro, 02-Oct-2017, published at http://ceur-ws.org

356



include, but are not limited to branch-and-bound methods, linear programming, constraint programming and
dynamic programming methods. For all of these methods, knowing the lower makespan bounds allows to vastly
reduce search time. In [Arkhipov et al., 2017], a polynomial algorithm of evaluating lower makespan bounds is
presented. The algorithm is based on estimating maximum resource load for a given pair of resources, which is
the main goal of the present paper.

2 Preliminaries

The problem of estimating maximum resource load can be formulated in the following way. There is a set of
jobs (tasks) N and a set of non-renewable resources R, and available amounts rj ∈ R+ of resources j ∈ R. Each
task may be either completed, rejected or executed partially. In order to complete task i ∈ N , amount rij ∈ R+

of each resource j ∈ R is required.
The completion ratio xi defines the executed part of each task i ∈ N . Completion ratio value xi = 1

corresponds to full completion of task i ∈ N , xi = 0 correspond to rejection, and all the other values in (0, 1)
correspond to partial execution (preemption). The required resources are consumed in proportion to completion
ratio of this job xi ∈ [0, 1], i.e. amount rijxi of each resource j ∈ R is needed.

The goal is to determine the vector X = {xi} of completion ratios such that the aggregate amount of
consumed resources is maximized

∑
j∈R

∑
i∈N xirij → max and the resource constraints

∑
i∈N xirij ≤ rj ∀j ∈ R

are satisfied.

3 Estimating Maximum Resource Load for Two Resources

In this section we will examine the case of two resources. As will be shown later, this problem can be solved in
polynomial time. Let us denote the available amounts of resources as A,B and resource consumption amounts
as ai, bi. We will also associate each task i ∈ N with a vector s⃗i = (ai, bi) in a two-dimensional rectangular
Cartesian coordinate system. For the sake of convenience, here and below we will consider N = {1, . . . , n}, where
n is the total number of tasks.

3.1 Formulation of the Problem

Let us reformulate the problem in a formal manner: given a pair of positive real numbers A,B ∈ R+ and a list
of tasks described by a set N = {1, . . . , n} of indices and set S = {s⃗i} ⊂ R+2

, i ∈ N of vectors s⃗i = (ai, bi) on

a two-dimensional rectangular Cartesian coordinate system, find vector X⃗ = {xi} ∈ Rn subject to constraints
A−

∑
i∈N aixi ≥ 0, B −

∑
i∈N bixi ≥ 0, xi ∈ [0, 1] with objective function

∑
i∈N aixi +

∑
i∈N bixi → max.

Consider the classical ”0-1” knapsack problem, which is known to be NP -hard, and can be solved in pseudo-
polynomial time [Pisinger, 1997]. If boolean decision variables are replaced with real decision variables (knapsack
with fractions), the problem becomes solvable in polynomial time, as was shown by Dantzig [Dantzig, 1957]. The
problem of estimating resource loads can also be regarded as a variant of subset sum (or vector sum) problem,
which is essentially a special case of the knapsack problem such that the cost of any item is equal to the weight of
this item. Therefore, one-dimensional subset sum problem with fractions is also solvable in polynomial time. In
[Baburin et al., 2007], a variant of vector sum problem is considered, and polynomial algorithms are presented
for the case of arbitrary dimensionality. However, the problem considered in [Baburin et al., 2007] differs from
the one considered in our article in that it does not involve any resource constraints, and the decision variables
are boolean. All the problems mentioned above are related to the vector partitioning problem, which has been
covered in [Onn et al., 1999]. Thus, the formulation of estimating resource loads problem takes the form of
two-dimensional variant of subset sum problem with fractions. One can assume that since the one-dimensional
subset sum problem with fractions is solvable in polynomial time, a polynomial approach to the two-dimensional
variant should exist as well, on which we will elaborate further.

As was mentioned before, the objective of the problem is to find a list of completion ratios that maximizes
resource consumption, taking the resource constraints into account. Obviously, if the amounts of available
resources exceed or are equal to their maximum possible consumption (

∑n
i=1 ai ≤ A,

∑n
i=1 bi ≤ B), the

solution would be X = {xi}|∀ i xi = 1, i.e. each task should be fully completed. However, this is rarely the case.

3.2 Geometric Approach to Determining Problem Solvability

Consider two permutations γup and γdown of vectors si acquired by sorting these vectors according to non-increase
and non-decrease of the ratio bi

ai
. Let us note the order of vectors according to these permutations as s

γup

i and

357



coordinates of these vectors as a
γup

i and so forth. For γup, the following inequality must be satisfied

∀i ∈ 1, n− 1
b
γup

i

a
γup

i

≥
b
γup

i+1

a
γup

i+1

For γdown the sign of this inequality is reversed. The division operation here is rather pro forma: obviously, the
case of dividing by zero must be handled with a separate conditional operator. If, for any two vectors, ratios of
their components

(
bi
ai

)
happen to be equal, the order of these vectors in permutations γup and γdown for now is

considered to be of no importance.
Note: obviously, sorting changes order of the vectors, which means the original indexation like si, xi, i ∈ N

would not make any sense. However, we will continue to use this style of indexation just for convenience’s
sake. When implementing the algorithms, it is useful to keep the original index stored as an object’s (vector’s)
property.

Let us place vector s
γup

1 starting at the origin of our coordinate system, then place the second vector s
γup

2

starting at the end of first one, and so forth. We will name the resultant polygonal line as γup, too. Let us also
do the same operations with elements of γdown, resulting in polygonal line γdown. Clearly, any permutation of n
vectors corresponds to some polygonal curve built with vectors s⃗i, and, if provided a set of coefficients X⃗ = {xi},
together this permutation and this set of coefficients correspond to a polygonal curve built with vectors (xis⃗i).

Since in γup, γdown vectors are sorted according to non-increase and non-decrease of tangent of the angle
between each vector and the abscissa axis of our coordinate system, these permutations also correspond to
sorting according to the value of this angle. Thus, the polygonal line γup is convex upward, and γdown is convex
downward, and together these lines form a convex polygon on the coordinate plane. We will name this polygon
the solvability domain of considered instance of the problem.

Lemma: Any polygonal curve γ′ comprised of vectors si ∈ S is located completely within the solvability
domain of considered instance of the problem.

Proof : We will view the considered polygonal curves as plots of piece-wise linear functions. For example the
curve γ corresponds to function bγ(a). Of course, if some of the vectors has a zero A component (ai = 0), the
resulting curve cannot be viewed as a function of A. However, these cases too can be handled by additional
condition operators.

Let γ be such a polygonal curve that ∀γ′, ∀a ∈ [0,
∑n
i=1 ai] bγ(a) ≥ bγ′(a). Then γ is identical to γup

(neglecting the cases in which ∃ i, j : bγi
aγi

=
bγj
aγj

), i.e. it is convex upward in each of its breaking points. To prove

this, suppose the contrary: let γ be convex downward in its j-th breaking point, i.e. ∃ j ∈ 1, n− 1 :
bγj
aγj

<
bγj+1

aγj+1
.

Consider a polygonal line ψ that differs from γ in that its j-th and (j+1)-th vectors are placed in reverse order:

sγj = sψj+1, s
γ
j+1 = sψj , ∀i ∈ N \ {j, j + 1} sγi = sψi . Then ψ is convex upward in its j-th breaking point, and

∀ a ∈ (
∑j−1
i=1 a

γ
i ,
∑j+1
i=1 a

γ
i ) bγ(a) < bψ(a), which contradicts the supposition that ∀γ′, ∀a ∈ [0,

∑n
i=1 ai] bγ(a) ≥

bγ′(a). Thereby γ is identical to γup. Similarly, by considering another polygonal curve γ, this time with the
condition ∀γ′, ∀a ∈ [0,

∑n
i=1 ai] bγ(a) ≤ bγ′(a), we can prove that ∀ a ∈ [0,

∑n
i=1 ai] bγdown

(a) ≤ bγ′(a).
Thereby ∀ γ′, ∀a ∈ [0,

∑n
i=1 ai] bγup(a) ≥ bγ′(a) ≥ bγdown

(a).

Corollary: Obviously, for any polygonal curve γ′ composed of vectors xis⃗i such that X⃗ = {xi} does not
violate the constraints xi ∈ [0, 1]

∀ γ′, ∀X⃗ |xi ∈ [0, 1] ∀i ∈ N

a similar inequality holds true

∀a ∈ [0,

n∑
i=1

aixi] bγup(a) ≥ bγ′(a) ≥ bγdown
(a)

i.e. such polygonal curves are also located within the solvability domain, which leads to the following:
∀X = {xi}|xi ∈ [0, 1] ∀ i ∈ N point (

∑n
i=1 aixi,

∑n
i=1 bixi) is located within the solvability domain.

Note: X should not necessarily be a solution to regarded instance of the problem.
This allows us to formulate the necessary and sufficient condition of possibility to consume all the available

resources: full consumption of the available resources A and B is possible if and only if point (A,B) is located
within the solvability domain. To verify the latter, consider the boundary of the solvability domain, which is
a pair polygonal curves γup and γdown, to be defined by a pair of piece-wise linear functions bγup(a), bγdown

(a)

358



and check if bγup(A) ≥ B ≥ bγdown
(A). For an empty task set S = ∅ the problem is considered solvable only if

A = 0, B = 0.

3.3 Algorithms.

In this section we’ll provide two algorithms of finding the solution that leads to full consumption of available
resources; the time complexities are O(n2).

First we’ll examine the problem of full resource consumption, which is to check if ∃X = {x1, . . . , xn} :
A −

∑n
i=1 aixi + B −

∑n
i=1 bixi = 0, taking into consideration all the constraints mentioned before. The case

in which full resource consumption is not possible will be examined after both of the algorithms (see Auxiliary
Algorithm).

3.3.1 Algorithm 1

The first algorithm is aiming at consequently reducing the current instance of full resource consumption problem
to a solvable subproblem that has a smaller number of tasks. This continues until the cardinality of current set
of tasks S reaches either 2, 1 or 0. Then the remaining problem is identical to solving a simple system of linear
equations.

Consider a fixed set of tasks N = {1, . . . , n} associated with vector set S = {s1, . . . , sn} and a resource vector

(A,B). Suppose this instance of the full resource consumption problem has a solution X⃗ = {x1, . . . , xn}.
Notice that if ∃ i ∈ 1, n : xi = 0, then the solution X⃗ of this problem is identical to the solution X⃗ ′ of a

subproblem for the task set S′ = S \ si and resource vector (A,B), except that in X⃗ ′ the component xi is

skipped: ∀ j < i x′j = xj , ∀ j > i x′j = xj+1. Similar applies if ∃ i ∈ 1, n : xi = 1, then the solution X⃗ of this

problem is identical to the solution X⃗ ′ except that the resource vector in the subproblem would be (A−ai, B−bi).
Let us introduce a boolean function u(s) : S → {0, 1}. u(s) = 1 means vector task s has been marked as used.

The first algorithm is as follows.

Algorithm 1

Step 1. Sort the tasks of the original set S by non-increase of ratio bi
ai
. If ai = 0, place the corresponding vector

at the end of the list.

Step 2. Check if full resource consumption is possible (check if the point (A,B) lies within the solvability
domain). If not – interrupt the algorithm.

Step 3. Mark all the task vectors si ∈ S as not used: ∀ si ∈ S u(si) := 0.
Cycle 1: until there is an unused task (∃ si ∈ S : | u(si) = 0):
1) Find an unused task vector si ∈ S |u(si) = 0.
Mark si as used: u(si) := 1. Form a subset of tasks S′

i by removing task si from S: S′
i = S \ si.

2) Check if full resource consumption is possible for S′
i and (A,B). If it is, assign xi := 0, S := S′

i.
Repeat the cycle.

Step 4. Cycle 2: until there is an unused task (∃ si ∈ S : u(si) = 0):
1) Select an unused task vector si ∈ S |u(si) = 0.
Mark si as used: u(si) := 1. Form a subset of tasks S′

i = S \ si and a modified resource vector (A′, B′)
where A′ = A− ai, B

′ = B − bi.
2) Check full resource consumption is possible for S′

i and (A′, B′). If it is, assign xi := 1, S := S′
i.

Repeat the cycle.

Step 5. If set S consists of two tasks j, k – solve the following system{
xjaj + xkak = A

xjbj + xkbk = B

If S consists of only one task j, solve any of the equations of the corresponding system. If S is empty, no
action is needed.

End.

359



Proposition: Time complexity of Algorithm 1 is at most O(n2), where n is the number of tasks in the initial
task set.

Proof : Examining each step of the Algorithm 1 individually, one can make sure that the most time-consuming
steps are Step 3 and Step 4, at which the solvability of a selected subproblem is tested, taking O(n) operations
for each subproblem instance. In total at most n subproblems are examined during both steps, taking O(n2) or
less operations. Thus, the time complexity of Algorithm 1 is O(n2).

3.3.2 Algorithm 2

The second algorithm is aimed at finding a pair of indices j, k such that solution α, β of the system
k−1∑
i=1

ai + βak = A+
j−1∑
i=1

ai + (1− α)aj

k−1∑
i=1

bi + βbk = B +
j−1∑
i=1

bi + (1− α)bj

satisfies the constraints 0 ≤ α, β ≤ 1 (the indexation is provided as if the vectors si were already sorted). Then,
the solution of the whole problem is constructed from this pair of indices j, k and coefficients α, β.

Let us modify the system: 
αaj +

k−1∑
i=j+1

ai + βak = A

αbj +
k−1∑
i=j+1

bi + βbk = B

(1)

Examining each pair j, k, which would take at least O(n2) time, is not necessary: note that for each fixed j,
the coefficients β form a monotoneous non-increasing sequence depending on k (we’ll provide a way of finding
such pair of α, β even if (1) has more than one solution).

Suppose that j ∈ N is fixed, and k1, k2 ∈ N are such that k1 < k2. Let α1, β1 be the solution of (1) for the
pair of indices j, k1, and α2, β2 the solution of (1) for j, k2. Then, since all the variables and coefficients in (1)
are non-negative, β1 ≥ β2. Therefore, a binary search can be implemented to slightly speed up the algorithm.
The algorithm is constructed as follows.

Algorithm 2

Step 1. Sort the tasks of set S by non-increase of ratio bi
ai
. If ai = 0, place the corresponding vector at the end

of the list.

Step 2. Check if the problem of full resource consumption is solvable (check if the point (A,B) lies within the
solvability domain). If the problem is unsolvable – interrupt the algorithm.

Step 3. Cycle:

For each j, k ∈ N calculate and memorize values of sums
k−1∑
i=j+1

ai,
k−1∑
i=j+1

bi.

Step 4. Set j = 1. Cycle:
For a fixed j ∈ N , try to find (via binary search) the index k such that the solution α, β of (1) meets the
constraint 0 ≤ β ≤ 1. When solving (1), use the values of sums calculated previously.

It may happen that for some pairs j, k system (1) has more than one solution, i.e. its determinant turns
out to be 0. In such cases, we simply assign one of the variables α, β equal to 0 and solve the remaining
equation to find the other variable.

If the obtained values α, β fit within the constraints 0 ≤ α, β ≤ 1, then interrupt the cycle. Otherwise,
set j := j + 1 and repeat the cycle.

Note: the situation in which none of the constraints were met and j reaches n is impossible, since it would
mean that full resource consumption is not possible and the algorithm must have been interrupted at Step
2.

360



Step 5. Assign
∀ i < j : xi := 0;
xj := α;
∀ i | j < i < k : xi = 1;
xk := β;
∀ i > k : xi = 0;

End.

Proposition: Time complexity of Algorithm 2 is O(n2), where n is the number of tasks in the initial task
set.

Proof : Examining each step of the Algorithm 2 individually, one can make sure that the most time-consuming
step is Step 3, which can be done in O(n2). Thus, the time complexity of Algorithm 2 is O(n2).

3.3.3 Auxiliary Algorithm

To account for cases in which full resource consumption is not possible (e.g.,
∑
i = 1naixi < A), another

algorithm is needed.
Auxiliary Algorithm

Step 1. Sort vectors si according to non-decrease of ratio bi
ai
. If ai = 0, place the corresponding vector at the

end of the list.

Step 2. Assign a := 0, b := 0, i := 1

Step 3. Cycle: while (a+ ai ≤ A)&(b+ bi ≤ B)&(i < n) do (xi := 1, a := a+ ai, b := b+ bi, i := i+ 1).

Step 4. If (i < n), assign xi := min
(
B−b
bi
, A−a

ai

)
, i := i+1 (only the minimum of these two values will meet the

constraint 0 ≤ xi ≤ 1).
Cycle: while (i ≤ n) do (xi := 0, i := i+ 1).

End.

Proposition: Time complexity of Auxiliary Algorithm is at most O(n log n), where n is the number of tasks
in the initial task set.

Proof : Examining each step of the Auxiliary Algorithm individually, one can make sure that the most time-
consuming step is Step 1, at which sorting the tasks takes O(n log n) time using Hoare’s quicksort. Thus, the
time complexity of Auxiliary Algorithm is O(n log n).

3.3.4 Main Algorithm

The algorithm to solve the problem of estimating maximum resource load for two resources (the main algo-
rithm) consists of either Algorithm 1 or Algorithm 2 supplemented with the Auxiliary Algorithm. Overall time
complexity, therefore, can be either O(n2) in case

∑n
i=1 aixi < A,

∑n
i=1 bixi < B or O(n log n) otherwise.

4 Estimating Maximum Resource Load for Arbitrary Number of Resources

The problem is close to a linear relaxation of multi-dimensional knapsack problem, with resource constraints
being regarded as knapsack capacity constraints. The multi-dimensional knapsack problem has been widely
described in [Kellerer et al., 2004].

We’ll call complete solution such a solution of the problem that allows for full resource consumption. We’ll
provide a polynomial algorithm that allows to find a complete solution (if such exists and is unique) for the case
r ≥ n.

Let us denote the matrix of required resource amounts rij as R, vector column of sought-for completion
ratios xi as X, and the vector column of available resource amounts ai as A. Finding a complete solution of
the original problem is then equivalent to solving a system of linear algebraic equations RX = A subject to
constraints 0 ≤ xi ≤ 1, i = 1, . . . , n.

We’ll describe the algorithm first and then discuss the ideas behind it.

361



Algorithm for the case r ≥ n

Step 1. Check if r ≥ n. If not – interrupt the algorithm.
Use the Gauss-Jordan elimination method on the augmented matrix (R|A) to obtain the reduced row echelon
form R∗ of matrix R and the transformed right-hand side A∗.
Check if rankR∗ = rank (R∗|A∗). If not – interrupt the algorithm.

Step 2. Check if rankR = rankR∗ = n. If not, interrupt the algorithm.
Since these matrices are if reduced row echelon form, to calculate ranks of these matrices one needs simply
to find the numbers of non-zero rows.
For all i = 1, . . . , n assign xi := a∗i .

Step 3. Check if all the completion ratios obtained xi fit within the constraints 0 ≤ xi ≤ 1. If not – interrupt
the algorithm.

End.

Since Gauss-Jordan method uses only elementary row operations, the rank of the matrix is not affected by it:
rankR = rankR∗. Steps 1 and 2 are based upon the Rouche-Capelli (Kronecker-Capelli) theorem. According to
it, the system RX = A is consistent and has a unique solution if and only if rankR = rank (R|A) = n, which is
equivalent to rankR∗ = rank (R∗|A∗) = n. This condition also implies that r ≥ n, which is best to be ascertained
at the very beginning of the algorithm in order to save computation time. If the solution to system RX = A
is unique, then the augmented matrix (R∗|A∗) produced by Gauss-Jordan method defines a set of n equalities
∀ i ∈ 1, . . . , n xi = a∗i . Step 3 is needed to ascertain that the solution provided by Gauss-Jordan method satisfies
the resource constraints.

Proposition: Time complexity of the provided algorithm is at most O(rn2), where n is the number of tasks
in the initial task set and r is the number of resources.

Proof : Examining each step of the algorithm individually, one can make sure that the most time-consuming
step is Step 1, at which Gauss-Jordan elimination method is implemented to obtain the reduced row-echelon
matrix R∗. The Gauss-Jordan elimination method requires n pivots, each of which requires O(nr) calculations
[Nemhauser et al., 1999]. Thus, the time complexity of the algorithm is O(n2).

Note that the algorithm does not provide a solution for any instance of the problem. However, it does
demonstrate that the problem is solvable polynomially in at least some of all possible cases.

5 Conclusion

In this paper we’ve examined the problem of estimating maximum resource load for Resource-Constrained
Project Scheduling Problem. We’ve discussed in detail the case of two resources and presented two polynomial
algorithms for solving this case, with time complexity of at most O(n2). The former allows for relatively easy
further modifications, while the latter is easier to implement and was used in designing a pseudopolynomial
RCPSP lower bound estimation algorithm. A series of tests was done using PSPLIB benchmark to compare the
designed pseudopolynomial algorithm with the best known lower bound estimation algorithms (Tab. 1).

Tasks Instances NW BKLB % MIN R BKLB % AVG R BKLB % Bounds improved
30 445 66,5 68,5 96,3 0
60 450 71,4 77,3 97,6 0
90 445 75,3 83,3 98,8 0
120 600 54,7 84,7 98,3 5

Table 1: Tasks – number of tasks, Instances – number of tested instances, NW BKLB – percent of instances,
where the obtained lower bound is not worse than the best one, MIN R BKLB – minimal ratio of the obtained
value to the best known lower bound, AVG R BKLB – average ratio of the obtained value to the best known
lower bound, Bounds improved – number of improved bounds.

The results demonstrate that for 66% of instances the lower bound provided by our algorithm is not worse
than the best known value. For all instances, our value of lower bound is at most 31, 5% worse than the best
known lower bound. Moreover, for 5 instances the best known lower bound was improved. We have also discussed
the general case of arbitrary number of resources and described how it can be solved in O(rn2) if r ≥ n, full
resource consumption is possible and the solution to the corresponding linear equation system is unique.

362



Acknowledgements

This work was supported by the Russian Science Foundation (grant 17-19-01665).

References

[Arkhipov et al., 2017] Arkhipov, D., Battaia, O., & Cegarra, J. (2017). Resource load-based makespan estima-
tion algorithm for resource-constrained project scheduling problem. Liste des articles accepts ROADEF
2017 [73], ROADEF 2017 Conference, Metz, France.

[Baburin et al., 2007] Baburin, A. E., & Pyatkin, A. V. (2007). Polynomial algorithms for solving the vector
sum problem. Journal of Applied and Industrial Mathematics, 1(3), 268-272.

[Dantzig, 1957] Dantzig, G. (1957). Discrete variable extremum problems. Operations Research, 5, 266-277.

[Garey et al., 1975] Garey, M. R., & Johnson, D. S. (1975). Complexity results for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing 4(4), 397-411.

[Kellerer et al., 2004] Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Springer-Verlag
Berlin Heidelberg GmbH.

[Nemhauser et al., 1999] Nemhauser, G., & Wolsey, L. (1999). Integer and Combinatorial Optimization. New
York: John Wiley & Sons, Inc.

[Onn et al., 1999] Onn., S., & Schulman, L. (1999). The Vector Partition Problem for Convex Objective Func-
tions. Mathematics of Operations Research 26(3), 583-590.

[Pisinger, 1997] Pisinger, D. (1997). A minimal algorithm for the 0-1 knapsack problem. Operations Research,
45(5), 758-767.

363


