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1

 

INTRODUCTION

The NP-complete even–odd partition problem
(EOP) [1] and the single-machine total tardiness prob-
lem NP-hard in the ordinary sense [2] are considered. A

pseudo-polynomial time 

 

O

 

(

 

n

 

4

 

)

 

 dynamic pro-

gramming algorithm was proposed by Lawler [3]. The
state-of-the-art algorithms proposed by Szwarc et al.
[4, 5] handle special instances [6] of the problem for

 

n

 

 < 

 

600.

We show that the special case 

 

B-1

 

 [7] is NP-hard in
the ordinary sense. Note that there exists a pseudo-

polynomial algorithm with run time 

 

O

 

(

 

n

 

)

 

 for the

case 

 

B-1 

 

[8]. We propose a polynomial scheme of reduc-
tion from the NP-complete 

 

even–odd partition problem 

 

to

the special case 

 

B-1

 

 of the problem 

 

1 

 

|| 

 

.

1. STATEMENT OF THE PROBLEMS

 

1.1. The Single-Machine Total Tardiness 

Problem 

 

1 

 

||

 

 

 

Given a set 

 

N

 

 of 

 

n

 

 independent jobs that need to be
processed on a single machine. Preemptions of jobs are
not allowed. The single machine can handle only one
job at a time. The jobs are available for processing at
time 0. For each job 

 

j

 

 

 

∈ 

 

N

 

 = {1, 2, …, 

 

n

 

}

 

, a processing
time 

 

p

 

j

 

 > 0

 

 and a due date 

 

π

 

 are given. A schedule 

 

d

 

j

 

 is
uniquely determined by a permutation of elements of

 

N

 

. We need to construct an optimal schedule 

 

π

 

*

 

 that

 

1

 

Article was translated by the authors.

p j∑

p j∑

T j∑

T j∑

 

minimizes the total tardiness value 

 

F

 

(

 

π

 

) = {0, 

 

c

 

j

 

(

 

π

 

) – 

 

d

 

j

 

},

 

where 

 

c

 

j

 

(

 

π

 

) 

 

is the completion time of job 

 

j

 

 in schedu-
le 

 

π

 

.

 

1.2. Even–Odd Partition Problem (EOP)

 

Given a set of 

 

2

 

n

 

 positive integers 

 

B

 

 = {

 

b

 

1

 

, 

 

b

 

2

 

, …,

 

b

 

2

 

n

 

}, 

 

b

 

i

 

 > 

 

b

 

i

 

 

 

+

 

 

 

1

 

, 1 

 

≤

 

 

 

i

 

 

 

≤

 

 

 

2

 

n

 

 – 1

 

, is there a partition of 

 

B

 

into two subsets 

 

B

 

1

 

 and 

 

B

 

2

 

 such that 

 

 =

 

 

and such that, for each 

 

i

 

 = 1, 2, …, 

 

n

 

, 

 

B

 

1

 

(and, hence, 

 

B

 

2

 

) contains exactly one number of {

 

b

 

2

 

i

 

 

 

–

 

 

 

1

 

,

 

b

 

2

 

i

 

}? The EOP problem is a well-known NP-complete
problem.

Let 

 

δ

 

i

 

 = 

 

b

 

2

 

i

 

 

 

–

 

 

 

1

 

 – 

 

b

 

2

 

i

 

, 

 

i

 

 = 1, …, 

 

n

 

, 

 

δ 

 

= 

 

. Now,
we construct a modified even–odd partition problem.
There is the following set of integers 

where 

 

b

 

 

 

� 

 

n

 

δ

 

, 

 

M

 

 

 

≥

 

 

 

n

 

3

 

b

 

. Obviously, we have 

 

a

 

i

 

 > 

 

a

 

i

 

 

 

+

 

 

 

1

 

,

 

∀

 

i

 

 = 1, 2, …, 2

 

n

 

 – 1, 

 

δ

 

i

 

 = 

 

b

 

2

 

i

 

 

 

–

 

 

 

1

 

 – 

 

b

 

2

 

i = a2i – 1 – a2i, i = 1,
…, n.

Lemma 1. The original EOP problem has a solution
if and only if the modified EOP problem does.

Proof. Let, for the original problem, there exist two
subsets B1 and B2 such that  = . We

max
j 1=

n

∑

bibi B1∈∑
bibi B2∈∑

δii 1=
n∑

a2n M b+=

a2i a2i 2+ b, i+ n 1– … 1, ,= =

a2i 1– a2i δi, i+ n … 1,, ,= =⎩
⎪
⎨
⎪
⎧

bibi B1∈∑ bibi B2∈∑
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denote A1 = {ai | bi ∈ B1}, A2 = {ai | bi ∈ B2}. Then, we

have  = .

Let, for the modified problem, there exist two sub-
sets A1 and A2 such that  = . Let us

denote B1 = {bi | ai ∈ A1}, B2 = {bi | ai ∈ A2}. We have

 = .

2. SPECIAL CASES 
OF THE 1 ||  PROBLEM

The following case B-1 of the problem 1 || 
was considered [7]:

(2.1)

This case is referred to the so-called “hard” instances in
paper [7]. The research of known algorithms [4, 8, 9]
has shown that, for the case B-1, the number of branch-
ings in the search tree is the greatest [8]. Let us intro-
duce the necessary definitions.

The sequence π = (j1, j2, …, jn) is an SPT-schedule
(shortest processing time) if  ≤ , and for  =

, we have  ≤ , k = 1, 2, …, n – 1. The
sequence π = (j1, j2, …, jn) is an EDD-schedule (earliest
due date) if  ≤  and, for  = , we have

 ≥ , k = 1, 2, …, n – 1.

For case (2.1), the sequence π = (1, 2, …, n) is an
EDD-schedule. The sequence π = (n, n – 1, …, 1) is an
SPT-schedule.

The sequence π' is a partial schedule if it contains
only jobs from the subset N' ⊂ N. Let P(N') = 
be the subset N' ⊂ N of jobs processed in {π'} = N', and
we denote P(π') = .

Lemma 2 [8]. For case (2.1), there exists an optimal
sequence π* = (πEDD, l, πSPT), where πEDD and πSPT are
partial sequences constructed according to EDD and
SPT rules.

Corollary. For case (2.1), late jobs for all optimal
schedules are processed according to the SPT-order,
except, perhaps, the first one.

Now, we present the polynomial reduction from the
modified EOP problem to the special subcase (2.1) of
the problem 1 || . The number of jobs is 2n + 1.

We denote the jobs by V1, V2, V3, V4, …, V2i – 1, V2i,
…, V2n – 1, V2n, V2n + 1, N = {1, 2, …, 2n, 2n + 1}. To sim-
plify the notation, we introduce  = pi,  = di,  =

aiai A1∈∑ aiai A2∈∑

aiai A1∈∑ aiai A2∈∑

bibi B1∈∑ bibi B2∈∑

T j∑
T j∑

p1 p2 … pn≥ ≥ ≥
d1 d2 … dn≤ ≤ ≤
dn d1– pn.≤⎩

⎪
⎨
⎪
⎧

p jk
p ji k+

p jk

p jk 1+
d jk

d jk 1+

d jk
d jk 1+

d jk
d jk 1+

p ji
p jk 1+

pii N'∈∑
pii π'{ }∈∑

T j∑

pVi
dVi

TVi

Ti, and  = Ci, i = 1, …, 2n + 1. The case that satisfies
the following constraints is called a canonical LG-
instance.

(2.2)

where b = n2δ, 0 < ε < .

The due dates pattern of the canonical LG instance
is presented in Fig. 1.

Let 

then, we have d2n + 1 = L + p2n + 1, because  =

 + δ. It is worth noting that canonical DL-

instances from paper [2] do not satisfy case (2.2). The
first two inequalities show that (2.1) is not a subcase.

3. PROPERTIES OF THE SPECIAL CASE (2.2) 
OF THE PROBLEM 1 || 

Let us formulate the following lemma.
Lemma 3. For case (2.2), for all sequences, the

number of tardy jobs equals n or n + 1.
Proof. We split the proof into two states. (1) Con-

sider the set N' of n + 2 jobs with the smallest process-
ing times and arrange them at the beginning of the
schedule. Obviously, we have 

CVi

p1 p2 … p2n 1+> > >
d1 d2 … d2n 1+< < <
d2n 1+ d1– p2n 1+<

p2n 1+ M n3b= =

p2n p2n 1+ b+ a2n= =

p2i p2i 2+ b+ a2i, i n 1– … 1, ,= = =

p2i 1– p2i δi+ a2i 1– , i n … 1, ,= = =

d2n 1+ p2i

i 1=

n

∑ p2n 1+
1
2
---δ+ +=

d2n d2n 1+ δ–=

d2i d2i 2+ n i–( )b– δ, i+ n 1– … 1, ,= =

d2i 1– d2i n i–( )δi– εδi, i– n … 1,, ,= =⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

δi
i

min

δi
i

max
--------------

L
1
2
--- pi,

i 1=

2n

∑=

1
2
--- pii 1=

2n∑
p2ii 1=

n∑ 1
2
---

T j∑

pi

i N'∈
∑ n 2+( ) pmin> n 2+( )n3b,=
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where pmin =  = p2n + 1. According to the fourth

to eighth equations from (2.2), we have

therefore,

Thus, the job processed on the (n + 2)th position is
tardy in all schedules. The subsequent jobs are also
tardy by the third equation from (2.2) since the differ-
ence between due dates of any two jobs is less than the
processing time for each job. Thus, for every schedule
π, the number of tardy jobs is greater than or equal to
n + 1.

(2) Let us consider set N'' of n jobs that are the long-
est in the processing time and process it at the begin-
ning of the schedule. Two cases are considered.

(a) Let n = 2k; then N'' = {V1, V2, …, V2k – 1, V2k}. We
have

p j{ }
j N∈
min

dmax d j{ }
j N∈
max d2n 1+= =

=  n 1+( )n3b b 2b … nb+ + +( ) 1
2
---δ,+ +

dmax d2n 1+=

=  n 1+( )n3b
n n 1+( )

2
--------------------b

1
2
---δ+ + n 2+( )n3b pi.

i N'∈
∑< <

P N''( ) nn3b 2 nb n 1–( )b …+ +(+=

+ n k– 1+( )b ) δi,
i 1=

k

∑+

P N''( ) nn3b=

+ 2 n n 1+( )
2

-------------------- n k–( ) n k– 1+( )
2

------------------------------------------–⎝ ⎠
⎛ ⎞ b δi.

i 1=

k

∑+

According to equations eight to eleven from (2.2),
we have

(b) Let n = 2k + 1; then, N'' = {V1, V2, …, V2k – 1, V2k,
V2(k + 1) – 1} and

dmin d j{ }
j N∈
min d1 d2n 1+= = =

– n i–( )b δ–( )
i 1=

n 1–

∑ δ n 1–( )δ1 εδ1–+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

=  n 1+( )n3b b 2b … nb+ + +( ) 1
2
---δ+ +

– n i–( )b δ–( )
i 1=

n 1–

∑ δ n 1–( )δ1 εδ1+ + +
⎝ ⎠
⎜ ⎟
⎛ ⎞

P N''( );>

P N''( ) nn3b 2 nb n 1–( )b …+ +(+=

+ n k– 1+( )b ) n k–( )b δi,
i 1=

k 1+

∑+ +

P N''( ) nn3b 2
n n 1+( )

2
--------------------⎝

⎛+=

–
n k–( ) n k– 1+( )

2
------------------------------------------⎠

⎞ b n k–( )b δi,
i 1=

k 1+

∑+ +

dmin d1 d2n 1+= =

– n i–( )b δ–( )
i 1=

n 1–

∑ δ n 1–( )δ1 εδ1–+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

εδ
n

(1
 +

 ε
)δ

n 
– 

1

(2
 +

 ε
)δ

n 
– 

2

(n
 –

 2
 +

 ε
)δ

2

(n – 1 + ε)δ
1

d1 d2 d4 d2(n – 3) d2(n – 2) – 1

d2(n – 2)

d2(n – 1) – 1

d2(n – 1)

d2n – 1

d2n

d2n + 1

(n – 1)b – δ 3b – δ 2b – δ b – δ
δ

b = n2δ 0 < ε < min δj/max δj

d2n + 1 – d1 = (n – 1 + ε)δ1 + ((n – 1)n)/2)b – (n – 1)δ + δ  <  p2n + 1 = n3b

d3

. . . 

Fig. 1. Due date pattern of the canonical LG instance.
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This means that the first n jobs are not tardy. Hence, for
any schedule π, the number of tardy jobs is less than or
equal to n.

Thus, for case (2.2) in all sequences, the number of
tardy jobs equals n or n + 1.

Lemma 4. For case (2.2), for all schedules π = (π1,
π2), there exists a schedule π' = (πEDD, πSPT), where
{π1} = {πEDD}, {π2} = {πSPT}, |{π1}| = n + 1, |{π2}| = n,
and, what is more, F(π) ≤ F(π') holds.

Proof. The partial sequence π1 is considered. The
first n jobs in π1 are not tardy, only the last job may be
tardy, so the EDD order is optimal for the set of jobs
{π1}. In this case, on the (n + 1)th position, job j =
argmax {di : i ∈ {π1}} is processed.

Now, we consider the sequence π2. The EDD-order
is optimal for set of jobs {π2}, because all n jobs are
tardy.

The schedule ((V1, 1, V2, 1, …, Vi, 1, …, Vn, 1, V2n + 1,
Vn, 2, …, Vi, 2, …, V2, 2, V1, 2) is called a canonical LG
schedule, where {Vi, 1, Vi, 2} = {V2i – 1, V2i}, i = 1, 2, …, n.

Lemma 5. If the sequence π = (π1, π2), |{π1}| = n +
1, |{π2}| = n is not a canonical LG schedule or we can-
not reduce it to a canonical LG schedule by the EDD
and SPT rules to π1 and π2 sets, then, in the schedule π,
two jobs {V2i – 1, V2i}, i < n are on-time processed or π
have the structure

(3.1)

i.e., the pair of jobs {V2n – 1, V2n} is processed before
V2n + 1, one of the jobs of each pair {V2i – 1, V2i}, i = 1,
…, n – 1 is processed before V2n + 1, the other job of the
pair is processed after V2n + 1, and the job V2n + 1 is pro-
cessed at the (n + 2)th step.

Proof. Let π = (π1, π2), where |{π1}| = n + 1, |{π2}| =
n. Consider the following cases.

(1) If {π2} = {V1, 2, …, Vn, 2}, then π2 consists of n
jobs and only one job from each pair {V2i – 1, V2i} for all
i = 1, …, n belongs to it. Jobs from π2 are sequenced by
the SPT-rule. We have a new canonical schedule π'. By
Lemma 4, we have F(π') ≤ F(π).

(2) If {π2} ≠ {V1, 2, …, Vn, 2}, the following cases are
possible:

(a) V2n + 1 ∈ {π2};
(b) there exists a pair of jobs {V2j – 1, V2j} ⊂ {π2}.
Then, for some i, we have {V2i – 1, V2i} ⊂ {π1},

because |{π2}| = n.

=  n 1+( )n3b b 2b … nb+ + +( ) 1
2
---δ+ +

– n i–( )b δ–( )
i 1=

n 1–

∑ δ n 1–( )δ1 εδ1+ + +
⎝ ⎠
⎜ ⎟
⎛ ⎞

P N''( ).>

V1 1, V2 1, … Vi 1, … Vn 1– 1, V2n 1– V2n V2n 1+ ,, , , , , , , ,(
Vn 1– 2, … Vi 2, … V2 2, V1 2,, , , , , ),

In what follows, we show in Theorem 1 that, for
case (2.2), all optimal schedules are canonical LG-
schedules. We will prove that a schedule π can be trans-
formed to a canonical LG-schedule π' and F(π) > F(π').
In the proof of Theorem 1, Lemmas 6–9 are used.

Lemma 6. Let the schedule π has the form (3.1),
where the job V2n + 1 is processed on the (n + 2)th posi-
tion. For schedule π' = (V1, 1, V2, 1, …, Vi, 1, …, Vn – 1, 1,
V2n – 1, V2n + 1, V2n, Vn – 1, 2, …, Vi, 2, …, V2, 2, V1, 2), we
will have F(π) > F(π').

Proof. In schedule π, the job V2n – 1 on the nth posi-
tion are processed. According to Lemma 3, the job
V2n − 1 is not tardy. The job V2n + 1 on the (n + 2)th posi-
tion is processed, so it is a tardy job.

For jobs {V2, V4, …, V2i, …, V2n – 2, V2n – 1}, we have

by the eighth equation from (2.2). Obviously,

holds; thus,

Therefore, the job V2n, which is processed on the
(n + 1)th place in schedule π is tardy. Let π = (π11, V2n,
V2n + 1, π21). Consider the canonical LG schedule π' =
(π11, V2n + 1, V2n, π21). Let us show that F(π) > F(π').

(a) Let, in the schedule π', the job V2n + 1 be not tardy.

According to (2.2), d2n + 1 – C2n + 1(π') ≤ δ holds,

because the schedule π' is a canonical LG.
From Fig. 2, we can see that the equation

holds.
(b) Let, in the schedule π', the job V2n + 1 is tardy,

then we have

F(π) – F(π') = T2n(π) + T2n + 1(π) 

– (T2n(π') + T2n + 1(π')) = p2n – p2n + 1 = b > 0.

Lemma 7. Assume that, in the schedule π = (π11,
V2i – 1, V2i, π12, π21, X, π22), a pair of jobs {V2i – 1, V2i},

P V2 V4 … V2i … V2n 2– V2n 1–, , , , , ,{ }( )

=  nn3b kb
k 1=

n

∑ δn+ + dV2n 1+
n3b–

1
2
---δ– δn,+=

P V1 1, V2 1, … Vi 1, … Vn 1– 1, V2n 1–, , , , , ,{ }( ) p2n+

≥ P V2 V4 … V2i … V2n 2– V2n 1–, , , , , ,{ }( ) p2n,+

C2n π( ) d2n 1+ b
1
2
---δ– δn+ + d2n.>≥

1
2
---

F π( ) F π'( )– T2n π( ) T2n 1+ π( )+=

– T2n π'( ) T2n 1+ π'( )+( ) T2n 1+ π( ) T2n 1+ π'( )–( )=

– T2n π'( ) T2n π( )–( ) p2n
1
2
---δ–⎝ ⎠

⎛ ⎞ p2n 1+–≥

=  p2n 1+ b
1
2
---δ– p2n 1+–+ 0>
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i < n, are not tardy, and, on the position i (“right”), the
job X ∈ {V2j – 1, V2j}, j ≥ i + 1. Then, for the schedule π' =
(π11, V2i – 1, X, π12, π21, V2i, π22), we have F(π) > F(π').

Proof. Let, in the schedule π, only the jobs from
{π21, X, π22} be tardy, where |{π22}| = i – 1. The job X is
processed on the position i (“right”) (Fig. 3). In the
canonical LG schedule, the job Vi, 2 ∈ {V2i – 1, V2i} is
processed on the position i (“right”).

Construct a schedule π' = (π11, V2i – 1, X, π12, π21, V2i,
π22). By Lemma 3, in both schedules, the number of
tardy jobs is greater than or equal to n. Therefore, the
number of tardy jobs preceding V2i in the schedule π' is
greater than or equal to n – i and no greater than n – i +
1. Thus,

The following situations are possible.
(a) If X = V2j, then p2i – pX = (j – i)b,

Hence,

F(π) – F(π') ≥ (j – i)b(n – i) – (n(j – i)b – i(j – i)b 

–  – (j – i)δ) =  + (j – i)δ > 0.

F π( ) F π'( )– p2i pX–( ) n i–( ) dX d2i–( ).–≥

dX d2i– n k–( )b j i–( )δ–
k i=

j 1–

∑=

=  n j i–( )b kb
k i=

j 1–

∑– j i–( )δ–

=  n j i–( )b i j i–( )b– kb
k 0=

j 1 i––

∑– j i–( )δ.–

kb
k 0=

j 1– i–

∑ kb
k 0=

j 1– i–

∑

(b) If X = V2j – 1, then 

p2i – pX = ((j – i)b – δj),

Hence,

F(π) – F(π') ≥ ((j – i)b – δj)(n – i) – (n(j – i)b 

– i(j – i)b –  – (j – i)δ – (n – j)δj – εδj) 

=  + (j – i)δ – (j – i)δj + εδj > 0. 

Lemma 8. Assume that, in the schedule π = (π11,
V2i – 1, V2i, π12, π21, X, π22), a pair of jobs {V2i – 1, V2i}, i <
n, are not tardy, and, on the position i (“right”), the job
X ∈ {V2j – 1, V2j}, j < i – 1. Then, for the schedule π' =
(π11, V2i – 1, X, π12, π21, V2i, π22), we have F(π) > F(π').

Proof. Suppose that, in the schedule π, only the jobs
from {π21, X, π22} are tardy, where |{π22}| = i – 1. The
job X is processed on the position i (“right”) (Fig. 3). In
the canonical LG-schedule, the job Vi, 2 ∈ {V2i – 1, V2i}
is processed on the position i (“right”).

Construct a schedule π' = (π11, V2i – 1, X, π12, π21, V2i,
π22). By Lemma 3, in both schedules, the number of
tardy jobs is greater than or equal to n. Therefore, by
Lemma 4, the number of tardy jobs following V2i in the
schedule π' is greater than or equal to n – i and no
greater than n – i + 1. Thus, we have

 

(a) If X = V2j, then pX – p2i = (i – j)b,

d2i – d2j = n – k)b – (i – j)δ 

= n(i – j)b –  – (i – j)δ 

= n(i – j)b – (i – 1)(i – j)b +  – (i – j)δ.

dX d2i– n k–( )b j i–( )δ n j–( )δ j εδ j–––
k i=

j 1–

∑=

=  n j i–( )b kb
k i=

j 1–

∑– j i–( )δ n j–( )δ j εδ j–––

=  n j i–( )b i j i–( )b–

– kb
k 0=

j 1 i––

∑ j i–( )δ– n j–( )δ j– εδ j.–

kb
k 0=

j 1– i–

∑

kb
k 0=

j 1– i–

∑

F π( ) F π'( )– d2i dX–( ) pX p2i–( ) n i– 1+( ).–≥

(
k j=

i 1–

∑

kb
k j=

i 1–

∑

kb
k 0=

i 1– j–

∑

Fig. 2. The permutation of V2n and V2n + 1.

Fig. 3. The permutation.

2n 2n + 1

d2n + 1

2n2n + 1

≥p2n – 1/2δ
d2n + 1
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i
1 1n n

n – i
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Therefore,

F(π) – F(π') ≥ n(i – j)b – (i – 1)(i – j)b +  

– (i – j)δ – (i – j)b(n – i + 1) =  – (i – j)δ > 0.

(b) If X = V2j – 1, then pX – p2i = (i – j)b + δj,

d2i – d2j – 1 = n – k)b – (i – j)δ + (n – j)δj + εδj 

= n(i – j)b –  – (i – j)δ + (n – j)δj + εδj 

= n(i – j)b – (i – 1)(i – j)b 

+  – (i – j)δ + (n – j)δj + εδj. 

Hence,

F(π) – F(π') ≥ n(i – j)b – (i – 1)(i – j)b +  

– (i – j)δ + (n – j)δj + εδj – ((i – j)b + δj)(n – i + 1) 

=  – (i – j)δ – δj + εδj > 0.

Lemma 9. Assume that, in the schedule π = (π11,
V2i – 1, V2i, π12, π21, X, π22), a pair of jobs {V2i – 1, V2i}, i <
n, are not tardy, and, on the position i (“right”), the job
X ∈ {V2(i – 1) – 1, V2(i – 1)}. Let, in the schedule π' = (π11,
V2i – 1, X, π12, π21, V2i, π22), the job Y be processed on the
position n + 1 and TY(π') < 2δ. Then, we will have
F(π) > F(π').

Proof. Let, in the schedule π, only the jobs from
{π21, X, π22} be tardy, where |{π22}| = i – 1. The job X is
processed on the position i (“right”) (Fig. 3). In the
canonical LG-schedule, the job Vi, 2 ∈ {V2i – 1, V2i} is
processed on the position i (“right”).

Construct a schedule π' = (π11, V2i – 1, X, π12, π21, V2i,
π22). By Lemma 3, in all schedules, the number of tardy
jobs is greater than or equal to n. Hence, the number of
tardy jobs preceding V2i in π is greater than or equal to
n – i. Thus,

(a) If X = V2(i – 1), then pX – p2i = b, d2i – d2i – 2 = (n –
i + 1)b – δ. Thus,

F(π) – F(π') > (n – i + 1)b – δ – (n – i)b – 2δ = b – 3δ > 0. 

kb
k 0=

i 1– j–

∑

kb
k 0=

i 1– j–

∑

(
k j=

i 1–

∑

kb
k j=

i 1–

∑

kb
k 0=

i 1– j–

∑

kb
k 0=

i 1– j–

∑

kb
k 0=

i 1– j–

∑

F π( ) F π'( )– d2i dX–( ) pX p2i–( ) n i–( )–>
– TY π'( ) TY π( )–( ) d2i dX–( ) pX p2i–( ) n i–( )– 2δ.–>

(b) If X = V2(i – 1) – 1, then pX – p2i = b + δi – 1, d2i –
d2i − 2 = (n – i + 1)b – δ + (n – i + 1)δi – 1 + εδi – 1. There-
fore,

F(π) – F(π') > (n – i + 1)b – δ + (n – i + 1)δi – 1 

+ εδi – 1 – (n – i)(b + δi – 1) – 2δ 
= b – 3δ + δi – 1 + εδi – 1 > 0,

because b = n2δ.
The results of Lemma 9 are employed in the proof

of Theorem 1. Note that the inequality TY(π) < 2δ takes
place. The situation TY(π') ≥ 2δ is not considered since
it does not occur. Based on the lemmas obtained, we
prove the following theorem.

Theorem 1. For case (2.2), all optimal schedules are
canonical LG schedules or can be reduced to canonical
LG-schedules by the application of EDD-rule to the
first n + 1 jobs.

Proof. Assume that π is an arbitrary schedule. By
Lemma 4, we can consider only schedules of the form
π = (πEDD, πSPT), where |{πEDD}| = n + 1. Note that the
job V2n + 1 is processed on the position n + 1 or n + 2.
Suppose that the schedule π is not a canonical LG
schedule.

Then, in π, two jobs {V2i – 1, V2i}, i < n, are not tardy
or π has structure (3.1) (see Lemma 6). Therefore, by
Lemma 6, there exists a canonical LG schedule π' =
(V1, 1, V2, 1, …, Vi, 1, …, Vn – 1, 1, V2n – 1, V2n + 1, V2n, Vn – 1, 2,
…, Vi, 2, …, V2, 2, V1, 2), so that F(π) > F(π'). Redenote
π = π'.

The following algorithm transforms a schedule π to
a canonical LG-schedule. The algorithm consists of
two cycles.

Cycle 1. WHILE, in the next schedule π, there exists
i such that, on the position i (“right”), a job X ∉
{V2(i − 1) – 1, V2(i – 1)}, X ≠ V2n + 1 is processed AND jobs
V2i – 1, V2i are not tardy DO

We apply a permutation for V2i, and X are denoted in
Lemmas 7 and 8. We have a new schedule π'. The total
tardiness is decreased.

End of cycle 1.
Denote π = π'. Obviously, the number of steps of

cycle 1 is fewer than n. Then, apply the EDD-rule for
the first n + 1 jobs in π.

The job V2n + 1 is processed on the position n + 1 or
n + 2 in the schedule π. If the job V2n + 1 is processed on
the position n + 2 (“left”), then the job V2n – 1 has the
position n and V2n has the position n + 1 according to
cycle 1 and the EDD-rule.

The following cases are possible.
I. Let the job V2n + 1 be processed on the position n + 2.
We consider the schedule π = (π1, V2n – 1, V2n, V2n + 1,

π2), where V2n is processed on the (n + 1)th position.
Here, we have |{π1}| = n – 1 = |{π2}|.
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According to cycle 1, only the situations described
in Lemma 9 are probable. So, P(π1) + 2qb + δ > P(π2) >
P(π1) + 2qb – δ, where q is the number of situations in
the schedule π.

For example, {π1} = {V2i – 1, V2i} ∪ {V1, 1, V2, 1, …,
Vi – 2, 1, Vi + 1, 1, …, Vn – 1, 1}; {π2} = {V2(i – 1) – 1, V2(i – 1)} ∪
{V1, 2, V2, 2, …, Vi – 2, 2, Vi + 1, 2, …, Vn – 1, 2}.

Then, q = 1 and P(π1) + 2b + δ > P(π2) > P(π1) + 2b –
δ holds, because –(δ – δi – 1 – δi – δn) < P({V1, 1, V2, 1, …,
Vi – 2, 1, Vi + 1, 1, …, Vn – 1, 1}) – P({V1, 2, V2, 2, …, Vi – 2, 2,
Vi + 1, 2, …, Vn – 1, 2}) < δ – δi – 1 – δi – δn and P({V2(i – 1) – 1,
V2(i – 1)}) – P({V2i – 1, V2i}) = 2b + δi – 1 – δi.

Consider two cases when q = 1 and q > 1.
In the case q = 0, we have (3.1) (see Lemma 6).
(a) Let q = 1.
It is known that 

We denote ∆ = P(π2) – (P(π1) + 2b), where –δ < ∆ < δ.
Let S = P(π1). Then, 2S + 2b + ∆ + p2n – 1 + p2n + p2n + 1 =
2S + ∆ + 2b + 3n3b + 2b + δn = 2L + n3b. Thus,

then,

It is known that L + n3b = d2n + 1; then, –δ < C2n(π) –
d2n + 1 < δ.

There exist two subcases when C2n(π) ≥ d2n + 1 and
C2n(π) < d2n + 1.

(1) C2n(π) ≥ d2n + 1. For the schedule π' = (π1, V2n – 1,
V2n + 1, V2n, π2), we have

F(π) – F(π') = T2n(π) + T2n + 1(π) – (T2n(π') 

+ T2n + 1(π')) = (T2n + 1(π) – T2n + 1(π')) 

– (T2n(π') – T2n(π)) = (p2n + 1 + (C2n(π) – d2n + 1)) 

– p2n + 1 = C2n(π) – d2n + 1 ≥ 0. 

(2) C2n(π) < d2n + 1, and C2n(π) > d2n holds, because
d2n + 1 – d2n = δ and d2n + 1 – C2n(π) < δ.

Let us describe the schedule π:

where |{π22}| = i – 1, X ∈ {V2(i – 1) – 1, V2(i – 1)}. If X =
V2(i – 1) – 1, then the permutation of neighboring jobs
V2(i – 1) – 1 and V2(i – 1), according to the SPT-rule, does
not increase the total tardiness.

pi

i 1=

2n 1+

∑ 2L p2n 1++ 2L n3b.+= =

L S
1
2
---∆ 2b n3b

1
2
---δn,+ + + +=

C2n π( ) P π1( ) p2n 1– p2n+ +=

=  S 2n3b 2b δn+ + + L n3b
1
2
---δn

1
2
---∆.–+ +=

π π11 V2i 1– V2i π12 V2n 1– ,, , , ,(=

V2n V2n 1+ π21 X π22, , , , ),

Let X = V2(i – 1). In π, n + 1 jobs are late. We construct
the schedule

Here, we have F(π) – F(π') = (d2i – d2(i – 1)) – (n – i +
1)(p2(i – 1) – p2i) = (n – i + 1)b – δ – (n – i + 1)b = –δ, so
the total tardiness is increased by δ.

Then, we have C2n(π') – d2n + 1 > b – δ. We construct
the schedule

 

We have F(π') – F(π'') > (p2n + 1 + b – δ) – p2n + 1 > b – δ.

Then, F(π) – F(π'') = b – δ – δ > 0.
(b) Let q > 1. Then, d2n – C2n(π) > b – 2δ.

If q = 2, then, in the schedule π' considered in
Lemma 9, for job Y = V2n, we have TY(π') < 2δ. There-
fore, we can use the permutation described in Lemma 9.

If q > 2, then, in the schedule π', n jobs are late, and,
by Lemma 9, we have F(π) > F(π').

II. Let the job V2n + 1 be processed on the position n +
1. Then, from Lemma 10, we have TY(π') = T2n + 1(π') <

δ. Therefore, we can use the permutation described in

Lemma 10.
Cycle 2. WHILE, in the next schedule π', there exist

two jobs V2i – 1, V2i, so that, on the position i (“right”), a
job X ∈ {V2(i – 1) – 1, V2(i – 1)}} is processed AND jobs
V2i − 1, V2i are not tardy DO.

We apply the permutation for V2i and X described in
cases I and II. We have a new schedule π'. The total tar-
diness decreases.

End of cycle 2.
End of algorithm.
Therefore, we can transform a schedule π to a

canonical LG-schedule π* in O(n) time, and the ine-
quality F(π) > F(π*) holds.

Theorem 2. The modified EOP problem has a solu-
tion if and only if in an optimal canonical LG-schedule
C2n + 1(π) = d2n + 1.

Proof. Consider a canonical LG-schedule

The jobs Vn, 2, …, Vi, 2, …, V2, 2, V1, 2 are tardy. The
job V2n + 1 can be tardy; then, 

π' π11 V2i 1– X π12 V2n 1– ,, , , ,(=

V2n V2n 1+ π21 V2i π22, , , , ).

π'' π11 V2i 1– X π12 V2n 1– ,, , , ,(=

V2n 1+ V2n π21 V2i π22, , , , ).

1
2
---

π V1 1, V2 1, … Vi 1, … Vn 1, V2n 1+ Vn 2, ,, , , , , , ,(=

… Vi 2, … V2 2, V1 2,, , , , ).

F π( ) TVi 2,
π( )

i 1=

n

∑ TV2n 1+
π( ).+=
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We denote  = C. Then,

Denote

then,

Therefore,

The problem

is reduced to the problem maxΦ, where

(1) If Vi, 2 = V2i, i = 1, …, n, then

(2) If Vi, 2 = V2i – 1, i = 1, …, n, then 

pii 1=
2n 1+∑

CVi 2,
π( )

i 1=

n

∑ nC n i–( ) pVi 2,
.

i 1=

n 1–

∑–=

φ i( )
1, Vi 2, V2i 1–=

0, Vi 2, V2i,=⎩
⎨
⎧

=

dVi 2,
d2n 1+=

– n k–( )b
k i=

n 1–

∑ n i– 1+( )δ φ i( ) n i–( )δi εδi+( )+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

.

TVi 2,
π( )

i 1=

n

∑ nC n i–( ) pVi 2,

i 1=

n 1–

∑– d2n 1+ ∫⎝
⎜
⎛

i 1=

n

∑–=

– n k–( )b
k i=

n 1–

∑ n i– 1+( )δ φ i( ) n i–( )δi εδi+( )+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

.

F π( )
π

min min TVi 2,
π( )

i 1=

n

∑ TV2n 1+
π( )+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Φ n i–( ) pVi 2,

i 1=

n 1–

∑=

– φ i( ) n i–( )δi εδi+( )
i 1=

n

∑ TV2n 1+
π( ).–

TV2n 1+
π( ) 1

2
---δ, Φ1 n i–( ) p2i

i 1=

n 1–

∑ 1
2
---δ.–= =

TV2n 1+
π( ) max

1
2
---δ– 0,

⎩ ⎭
⎨ ⎬
⎧ ⎫

0,= =

Φ n i–( ) p2i 1–

i 1=

n 1–

∑ n i–( )δi εδi+( )
i 1=

n

∑–=

=  n i–( ) p2i

i 1=

n 1–

∑ n i–( )δi

i 1=

n 1–

∑+

The function Φ has the maximal value 

when 

therefore,

Hence, for the modified problem, there exist two sub-
sets A1 and A2 such that 

(the modified EOP problem has a solution). Here, we
have C2n + 1(π) = d2n + 1.

If the modified EOP problem does not have a solu-
tion, then 

does not hold. Taking into account the value d2n + 1, we
have Cn + 1(π) ≠ d2n + 1.

If C2n + 1(π) = d2n + 1, then 

therefore, the modified EOP problem also has a solu-
tion.

4. CONCLUSIONS

In conclusion, we note that there exists a pseudo-
polynomial algorithm with O(n ) run time that
solves cases (2.1) and (2.2) [8]. To solve canonical DL-
instances [2] and case (2.1), we proposed an exact algo-
rithm B-1 with O(n ) run time. For the special case
(2.2), there exists a pseudopolynomial algorithm B-1
canonical with O(nδ) run time. The algorithm B-1 mod-
ified is able to solve instances when 1 || , so we
can find a solution for the noninteger EOP problem.
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