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Introduction

We consider the simple assembly line balancing problem (SALBP-1) which
is formulated as follows.

Given a set N = {1, 2, . . . , n} of operations and K stations (machines)
1, 2, . . . ,K. For each operation j ∈ N a processing time tj ≥ 0 is defined.
The cycle time c ≥ max{tj , j ∈ N} is given. Furthermore, finish-start
precedence relations i → j are defined between the operations according
to an acyclic directed graph G. The objective is to assign each operation
j, j = 1, 2, . . . , n, to a station in such a way that:
- number m ≤ M of stations used is minimized;
- for each station k = 1, 2, . . . ,m a total load time

∑

j∈Nk
tj does not

exceed c, where Nk – a set of operations assigned to a station k;
- given precedence relations are fulfilled, i.e. if i → j, i ∈ Nk1

and j ∈ Nk2

then k1 ≤ k2.
A survey on results for NP-hard in the strong sense SALBP-1 is pre-

sented, e.g., in [1,2].
Partition problem. Given is a set N = {b1, b2, . . . , bn} of numbers b1 ≥
b2 ≥ · · · ≥ bn > 0 with bi ∈ Z+, i = 1, 2, . . . , n, and a number A ∈ Z+

with A <
∑

j∈N bj . Is there a subset N ′ ⊂ N such that
∑

j∈N ′ bj = A?
The worst case running time of B&B algorithms for the well-known

Knapsack Problem is analyzed, e.g., in [4]. In these papers authors choose
to use only special cases, for which it is fairly easy to find an optimal so-
lution with a B&B algorithm. However to prove its optimality, almost
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all feasible solutions should be considered. We use a similar idea to con-
struct a special case of SALBP-1 for which each B&B algorithm with no
matter what polynomial time computed Lower Bound has an exponential
run time. This makes algorithms ineffective for instances with n ≥ 60
operations.
Modified instance of the Partition problem. Given is a set N =
{b1, b2, . . . , b2n} of numbers b1 ≥ b2 ≥ · · · ≥ b2n > 0 with bi ∈ Z+, i =
1, 2, . . . , 2n, and a number A ∈ Z+ with A <

∑

j∈N bj . The numbers

bi, i = 1, 2, . . . , 2n are denoted as follows:

b2n = 1, b2i = 2 ·

n
∑

j=i+1

b2j−1, i = n−1 . . . , 1, b2i−1 = b2i+bi, i = n . . . , 1,

where b1, b2, . . . , bn – numbers from the initial instance. LetA =
∑n

i=1
b2i+

A. Without lost of generality let us assume A = 1

2

∑n

i=1
bi and as con-

sequence A = 1

2

∑2n

i=1
bi. The question is: ”Is there a subset N

′
⊂ N

such that
∑

j∈N
′ bj = A”? If for the initial instance of the Partition

Problem the answer is ”YES” (and the same answer has the modified

instance) then N ′ contains one and only one number b
i
from each pair

{b2i−1, b2i}, i = 1, 2, . . . , n. If the number bi is included in the set N ′

then b2i−1 is included in N ′, otherwise the number b2i ∈ N ′.
In the special case of SALBP-1 there are 2n operations. Let w′ =

min{w|10w ≥ 2A}. Let us

ti = 10w
′

+ bi, i = 1, 2, . . . , 2n

and c = 1

2

∑2n

i=1
ti. There are no precedence relations between operations.

It is obvious that if and only if for the modified instance of the Par-
tition Problem the answer is ”YES” then the minimal umber of stations
m∗ = 2, otherwise m∗ = 3. As a consequence, if NP 6= P , there is no
polynomial time computed Lower Bound with a relative error equal or
less than 3

2
. That means, for any set of polynomial time computed Lower

Bounds {LB1, LB2, . . . , LBX}, there is a modified instance of the Parti-
tion Problem with an answer ”NO”, for which LBx = 2, i = 1, 2, . . . , X,
although m∗ = 3. For the special case of SALBP-1, any feasible solution
is optimal. However, to prove its optimality almost all feasible solutions
must be considered.
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Let us estimate the possible number of feasible solutions. On the first
station there could be processed at least n−1 operations. Thus, there are
at least

(

2n

n−1

)

possible loads of the first station, i.e. the number of feasible

solutions which have to be considered is greater than
(

2n

n−1

)

= n+1

n

(

2n

n

)

≈
n+1

n
· 2

2n

√
nπ

. To solve such the instance of SALBP-1 with 2n = 60 a computer

must perform more than 2
60

10
operations. Let us assume that the fastest

known computer performs 230 operations per second, or less than 247

operations per day. Then a run time of an algorithm will be more than
2
13

10
> 800 days! That means there are instances of SALBP-1 for which

any B&B algorithm with polynomial time computed Lower Bounds has
an unappropriate running time.

We can conclude the following. Despite the best known algorithm
B&B [3] solves all benchmark instances in less than 1 second per in-
stance, known B&B algorithms for SALBP-1 remain exponential and can
not solve some instances with the size n > 60 in an appropriate time.
That is why we consider exact algorithms for the general case of the
problem unpromising. Researchers can concentrate on special cases or on
essentially new solution schemes.

Maximization of Number of Stations

To propose an essentially new solution scheme for SALBP-1, it is nec-
essary to investigate properties of optimal solutions. We can investigate
not only properties of good solutions to try imitate their character but
properties of poor solutions as well to avoid solutions with their aspects.
Here, in contrast to standart SALBP-1, where the number of stations used
should be minimized we consider an optimization problem with the op-
posite objective criteria, in other words the maximization of the number
of stations. The investigation of a particular problem with the maximum
criterion is an important theoretical task [5]. To make the maximiza-
tion problem not trivial we assume that all stations (instead the last one)
should be maximal loaded, i.e. for two stations m1,m2, m1 < m2 there
is no operation j assigned on the station m2 which can be assigned on
station m1 without violation of precedence constraints or the feasibility’s
condition ”total load time of the station does not exceed the cycle time”.
Denote the maximization problem by max− SALBP − 1.

Theorem 1. max-SALBP-1 is NP-hard in the strong sense (by re-
duction from the 3-Partition Problem).
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Theorem 2. max-SALBP-1 is not approximated with an approxima-
tion ratio ≤ 3

2
unlike P = NP .

An experimental study of maximal number of stations for benchmark
instances published on http://www.assembly-line-balancing.de was done.
The results show that the maximal founded deviation mmax−mmin does
not exceed 20%.

Flat Graph of Precedence Relations

In [6] authors propose a transformation of graph G of precedence re-
lations to planar one for the well-known Resource-Constrained Project
Scheduling Problem. The same idea can be used for SALBP-1.

Theorem 3. For any instance of SALBP-1 with n operations and v

precedence relations, there exists an analogous instance with a flat graph
G′ with n′ operations and v′ relations, where n+ v ≥ n′ + v′.

We obtain an analogous instance from the original one by adding
”dummy” operations (with tj = 0) and deleting all the unnecessary rela-
tions. According to the well-known Euler’s Theorem, v′ ≤ 3n′− 6 in such
the planar graph.

The number of precedence relations influences running time and the
theoretical complexity of solution algorithms. The number of precedence
relations is estimated by different authors asO(n2) (i.e, the ”Order strength”
on http://www.assembly-line-balancing.de is estimated according to the
number n · (n− 1) of precedence relations). If we consider only instances
with planar graphs then the number of relations is ≤ 3n − 6, i.e. O(n).
So, the fact mentioned in Theorem 3 allows us to reduce the run time
of algorithms (by reduction of unnecessary relations) and estimate the
complexity exacter.
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