
A Graphical Approach to Solve

Combinatorial Problems: Algorithms and

Some Computational Results ⋆

Evgeny R. Gafarov, ∗ Alexander A. Lazarev, ∗∗

Frank Werner ∗∗∗

∗ Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia,

(e-mail: axel73@mail.ru.)
∗∗ Institute of Control Sciences of the Russian Academy of Sciences,

Profsoyuznaya st. 65, 117997 Moscow, Russia,
(e-mail: jobmath@mail.ru)

∗∗∗ Fakultät für Mathematik, Otto-von-Guericke-Universität,
PSF 4120, 39016 Magdeburg, Germany,

(e-mail: frank.werner@ovgu.de)

Abstract: In this paper, we present a modification of dynamic programming algorithms (DPA),
which we denote as graphical algorithms (GrA). For some single machine scheduling problems,
it is shown that the time complexity of the GrA is less than the time complexity of the standard
DPA. Moreover, the average running time of the GrA is often essentially smaller. A GrA can
also solve large-scale instances and instances, where the parameters are not integer. For some
problems, GrA has a polynomial time complexity in contrast to a pseudo-polynomial complexity
of a DPA.

Keywords: Dynamic programming, Optimization, Scheduling algorithms, Graphical algorithm,
Single machine, Algorithms.

1. INTRODUCTION

Dynamic programming is a general optimization technique
developed by Bellman (1957). It is a recursive optimization
procedure which interprets an optimization problem as a
multi-step decision process. The problem is decomposed
into a number of steps. In each step, a decision has to
be made which has an impact on the decision to be
made in later steps. By means of Bellman’s optimization
principle, a recursive equation is set up which describes
the optimal criterion value in a given step in terms of the
optimal criterion values of the previously considered step.
Bellman’s optimality principle can be briefly formulated
as follows: Starting from any current step, an optimal
policy for the subsequent steps is independent of the
policy adopted in the previous steps. In the case of a
combinatorial optimization problem, in some step j sets
of a particular size j are considered. To determine the
optimal criterion value for a particular subset of size j, one
has to know the optimal values for all necessary subsets of
size j − 1. If the problem includes n elements, the number
of subsets to be considered is equal to O(2n). Therefore,
dynamic programming usually results in an exponential
complexity. However, if the problem considered is only
NP -hard in the ordinary sense, it is possible to derive
pseudo-polynomial algorithms.

⋆ Partially supported by RFBR (Russian Foundation for Basic Re-
search): 11-08-01321, 11-08-13121 and DAAD (Deutscher Akademis-
cher Austauschdienst): A/08/80442/Ref. 325.

In this paper, we give the basic idea of a graphical modifi-
cation of dynamic programming algorithms (DPA), which
we denote as graphical algorithms (GrA). This approach
often reduces the number of states to be considered in each
step of a DPA. In contrast to a classical DPA, it can also
treat problems with non-integer data without necessary
transformations of the corresponding data. Sometimes, a
GrA essentially reduces the time complexity.

We note that for the knapsack problem and for the single
machine weighted number of tardy jobs problem, DPA
with the same idea like that used in a GrA are known
(see e.g. Sahni (1976)). In such a DPA, not all integer
states t ∈ [0, A] are considered but only such states
which have different objective function values (here, A
is the largest value of a state to be considered, e.g. the
capacity of the knapsack in the knapsack problem). As
a result, the time complexity of such a DPA is bounded
by O(nFopt), where Fopt is the optimal objective function
value. However, these algorithms can be useful only for
problems with Fopt < A, otherwise this procedure has no
advantage over the classical DPA. We generalize the idea
of such algorithms for an objective function, for which
Fopt ≫ A may hold (e.g., for the single machine total
weighted tardiness maximization problem).

Moreover, in contrast to algorithms from Sahni (1976), this
modification is also useful for some scheduling problems,
where the starting time is variable and one wishes to find
all Pareto-optimal solutions (see Section 3.2).

F-403

2. BASIC IDEA OF THE GRAPHICAL ALGORITHM

Usually in a DPA, we have to compute the value fj(t) of a
particular function for each possible state t at each stage
(step) j of a decision process, where t ∈ [0, A] and t ∈ Z.
If this is done for any stage j = 1, 2, . . . , n, where n is the
size of the problem, the time complexity of such a DPA
is typically O(nA). However, often it is not necessary to
store the result for any integer state since in the interval
[tl, tl+1), we have a functional equation fj(t) = ϕ(t) for
describing the best function value for a state t in step j
(e.g. fj(t) = kj · t + bj , i.e., fj(t) is a continuous linear
function when allowing also real values t).

Assume that we have the following Bellman’s recursive
equations in a DPA for a minimization problem:

fj(t) = min

{

Φ1(t) = αj(t) + fj−1(t− aj), j = 1, n;
Φ2(t) = βj(t) + fj−1(t− bj), j = 1, n.

(1)

with the initial conditions
f0(t) = 0, for t ≥ 0,
f0(t) = +∞, for t < 0.

(2)

In (1), function Φ1(t) characterizes the setting xj = 1
while Φ2(t) characterizes the setting xj = 0 representing
a yes/no decision, e.g. for an item, a job, etc. In step
j, j = 1, 2, . . . , n, we compute and store the data in the
form given in Table 1.

Table 1: Computations in DPA
t 0 1 2 . . . y . . . A
fj(t) val0 val1 val2 . . . valy . . . valA
OPS X(0) X(1) X(2) . . . X(y) . . . X(A)

Here X(t), t = 0, 1, . . . , A, is a vector which describes an
optimal partial solution (OPS) and which consists of j
numbers x1, x2, . . . , xj ∈ {0, 1}. This data can also be
stored in a condense tabular form as given in Table 2.

Table 2: Computations in GrA
t [t0, t1) [t1, t2) . . . [tl, tl+1) . . . [tmj−1, tmj

]
fj(t) ϕ1(t) ϕ2(t) . . . ϕl+1(t) . . . ϕmj

(t)
OPS X(t0) X(t1) . . . X(tl) . . . X(tmj−1)

Here, we have 0 = t0 < t1 < t2 < . . . < tmj
= A.

To compute function fj+1(t), we compare two temporary
functions Φ1(t) and Φ2(t) which are as follows.

The function Φ1(t) is a combination of the terms αj+1(t)
and fj(t − aj+1). Function fj(t − aj+1) has the same
structure as in Table 2, but all intervals [tl, tl+1) have been
replaced by [tl − aj+1, tl+1 − aj+1), i.e., we shift the graph
of function fj(t) to the right by the value aj+1. If we can
present function αj+1(t) in the same form as in Table 2
with µ1 columns, we store function Φ1(t) in the form of
Table 2 with mj + µ1 columns. In an analogous way, we
store function Φ2(t) in the form of Table 2 with mj + µ2

columns.

Then we construct function fj+1(t) = min{Φ1(t),Φ2(t)}.
For example, let the columns of Table Φ1(t) contain the
intervals

[t10, t
1
1), [t

1
1, t

1
2), . . . , [t

1
(mj+µ1)−1, t

1
(mj+µ1)

]

and the columns of Table Φ2(t) contain the intervals

[t20, t
2
1), [t

2
1, t

2
2), . . . , [t

2
(mj+µ2)−1, t

2
(mj+µ2)

].

To construct function fj+1(t), we compare the two func-
tions Φ1(t) and Φ2(t) on each interval, which is formed by
means of the points

{t10, t
1
1, t

1
2, . . . , t

1
(mj+µ1)−1, t

1
(mj+µ1)

,

t20, t
2
1, t

2
2, . . . , t

2
(mj+µ2)−1, t

2
(mj+µ2)

},

and we determine the intersection points t31, t
3
2, . . . , t

3
µ3
.

Thus, in the table of function fj+1(t), we have at most
2mj + µ1 + µ2 + µ3 ≤ A intervals.

In fact, in each step j = 1, 2, . . . , n, we do not consider all
points t ∈ [0, A], t ∈ Z, but only points from the interval
in which the optimal partial solution changes or where
the resulting functional equation of the objective function
changes. For some objective functions, the number of
such points M is small and the new algorithm based
on this graphical approach has a time complexity of
O(nmin{A,M}) instead of O(nA) for the original DPA.
Since we have to save in memory only one Table 2, which
is changed after each step, the size of memory used does
not exceed O(nmin{A,M}).

Moreover, such an approach has some other advantages.

1. The GrA can solve instances, where (some of) the
parameters aj , bj , j = 1, 2, . . . , n or/and A are not
in Z.

2. The running time of the GrA for two instances with
the parameters {aj , bj , A} and {aj · 10

k ± 1, bj · 10
k ±

1, A · 10k ± 1}, k > 1, is the same while the running
time of the DPA will be 10k times larger in the second
case. Thus, one can usually solve considerably larger
instances with the GrA.

3. Properties of an optimal solution can be taken into ac-
count, and sometimes the GrA has even a polynomial
time complexity, or we can at least essentially reduce
the complexity of the standard DPA (see below).

3. GRAPHICAL ALGORITHMS FOR SINGLE
MACHINE SCHEDULING PROBLEMS

In this section, we present GrA for several single machine
scheduling problems, which can be formulated as follows.
We are given a set N = {1, 2, . . . , n} of n independent jobs
that must be processed on a single machine. Preemptions
of a job are not allowed and at any time, no more than one
job can be processed. The processing of the jobs starts at
time 0. For each job j ∈ N , a processing time pj > 0, a
weight wj and a due date dj are given.

A schedule is uniquely determined by a permutation π =

(j1, j2, . . . , jn) of the jobs of set N . Let Cjk(π) =
k
∑

l=1

pjl be

the completion time of job jk in sequence π. If Cj(π) > dj ,
then job j is tardy and we have Uj(π) = 1, otherwise
Uj(π) = 0. If Cj(π) ≤ dj , then job j is said to be
on-time. Moreover, let Tj(π) = max{0, Cj(π) − dj} be
the tardiness of job j in sequence π and let GTj(π) =
min{max{0, Cj(π)− dj}, pj}.

For the problem of minimizing the weighted number of
tardy jobs 1||

∑

wjUj , the objective is to find an optimal

sequence π∗ that minimizes the value
n
∑

j=1

wjUj(π) and for

F-404

the problem of maximizing total tardiness 1(nd)||max
∑

Tj

Lawler et al. (1969), Gafarov et al. (2010b), the objective
is to find an optimal sequence π∗ that maximizes the value
n
∑

j=1

Tj(π), where each feasible schedule starts at time 0 and

does not have any idle time between the processing of jobs.
In the case of the single machine generalized total tardiness
minimization problem 1||

∑

GTj , we wish to minimize the

value
n
∑

j=1

GTj(π) (see Gafarov et al. (2010a)).

In Table 3, we summarize the time complexity of existing
and new GrA for particular scheduling problems, where
dmax = maxj∈N{dj}.

Table 3: Time complexity of GrA and DPA
Problem GrA DPA
1||

∑

wjUj O(min{2n, n ·
min{dmax, Fopt}})
Gafarov et al.
(2010a)

O(ndmax)

1|dj = d′j + A|
∑

Uj

Hoogeveen et al.
(2010)

O(n2) O(n
∑

pj)

1||
∑

GTj O(min{2n, n ·
dmax}) Gafarov
et al. (2010a)

O(ndmax)

1||
∑

Tj case B-1 O(min{2n, n ·
dmax}) Lazarev
et al. (2009)

O(ndmax)

1(nd)||max
∑

wjTj O(min{2n, n ·
min{dmax,

∑

wj}})
O(ndmax)

1(nd)||max
∑

Tj O(n2) Gafarov
et al. (2010b)

O(ndmax)

Usually, the running time of the GrA will be smaller
while the running time of the DPA is equal to the time
complexity.

3.1 A GrA for the Minimization of the Weighted Number
of Tardy Jobs on a Single Machine

Lemma 1. For problem 1||
∑

wjUj , there exists an opti-
mal sequence π = (G,H), where all jobs j ∈ H are tardy
and all jobs i ∈ G are on-time. All jobs from the set G
are processed in EDD (earliest due date) order and all
jobs from the set H are processed in LDD (last due date)
order.

Note that in an optimal schedule, the on-time jobs can
be scheduled in EDD order while the tardy jobs can be
arbitrarily scheduled. Now we present a solution algorithm
for the equivalent problem of maximizing the total weight
of the on-time jobs which is based on Lemma 1.

Algorithm 1

1. Enumerate the jobs according to non-increasing due
dates: d1 ≥ d2 ≥ . . . ≥ dn.

2. π1(t) := (1). For each t ∈ Z
⋂

[0,
n
∑

i=2

pi], compute:

if p1 + t− d1 ≤ 0, then f1(t) := w1 else f1(t) := 0;
3. FOR j := 2 TO n DO

FOR t := 0 TO
n
∑

i=j+1

pi (t ∈ Z) DO

π1 := (j, πj−1(t+ pj)), π
2 := (πj−1(t), j);

If pj+t−dj ≤ 0, then Φ1(t) := wj+fj−1(t+
pj) else Φ1(t) := fj−1(t+ pj);

If
j
∑

i=1

pi+ t−dj ≤ 0, then Φ2(t) := fj−1(t)+

wj else Φ2(t) := fj−1(t);
If Φ1(t) < Φ2(t), then fj(t) := Φ2(t) and
πj(t) := π2

else fj(t) := Φ1(t) and πj(t) := π1;
4. πn(0) is an optimal schedule with the objective func-

tion value fn(0).

πj(t) represents the best partial sequence of the jobs
1, 2, . . . , j when the first job starts at time t, and fj(t) =
j
∑

i=1

wi[1 − Ui(πj(t))] denotes the corresponding weighted

number of on-time jobs.

Theorem 1. (Gafarov et al. (2010a)) Algorithm 1 con-
structs an optimal schedule for problem 1||

∑

wjUj in
O(n

∑

pj) time.

For this GrA, we have the following functional equations:

fj(t) = max

{

Φ1(t) = α(t) + fj−1(t+ pj), j = 1, n;
Φ2(t) = β(t) + fj−1(t), j = 1, n.

(3)

where f0(t) = 0 for t ≥ 0.

Φ1(t) represents the setting xj = 1 (job j is added to the
beginning of the partial sequence) while Φ2(t) represents
the setting xj = 0 (job j is added to the end). If pj + t−

dj ≤ 0, then α(t) = wj else α(t) = 0. If
j
∑

i=1

pi + t− dj ≤ 0,

then β(t) = wj else β(t) = 0.

Algorithm 1 can be modified by considering for each
j = 1, 2, . . . , n, only the interval [0, dj − pj] instead of the

interval [0,
n
∑

i=j+1

pi] since for each t > dj−pj , job j is tardy

in any partial sequence πj(t) and the partial sequence
π2 := (πj−1(t), j) is optimal. Thus, the time complexity
of the modified Algorithm 1 is equal to O(ndmax). Here

we note that one can assume that dmax <
n
∑

j=1

pj since

otherwise the job with maximal due date is always on-time
and can be excluded from the consideration.

The idea of the GrA for this problem is as follows. In each
step of the GrA, we store function fj(t) in tabular form as
given in Table 4, where t1 < t2 < . . . < tmj

,W1 > W2 >
. . . > Wmj

and OPS denotes an optimal partial sequence.

Table 4: Function fj(t)
t t1 t2 . . . tmj

fj(t) W1 W2 . . . Wmj

OPS π1 π2 . . . πmj

The above data means the following. For each value
t ∈ (tl, tl+1], 1 ≤ l < mj , we have an optimal partial
sequence πl = (G,H) and the objective function value
fj(t) = Wl =

∑

i∈G

wi. The points tl are called the break

points, i.e., we have fj(t
′) > fj(t

′′) for t′ ≤ tl < t′′.

F-405

In the next step j + 1, we transform function fj(t) into
functions Φ1(t) and Φ2(t) according to Step 3 of Algo-
rithm 1 in O(mj) operations. In each of the tables for
Φ1(t) and Φ2(t), we have at most mj + 1 break points.
Then we compute a new table of the function fj+1(t) =
max{Φ1(t),Φ2(t)} in O(mj) operations. In the new table
of function fj+1(t), there are at most 2mj + 2 break
points (usually, this number is smaller). In fact, we do
not consider all points t from the interval [0,min{dj −

pj ,
n
∑

i=j+1

pi}], but only points from this interval at which

the objective function value changes. If we have a situation
described in Table 5, we cut the column corresponding
to point tl+1, combine both intervals, and we can use
πl := πl+1.

Table 5: Reducing the number of intervals for fj+1(t)
t . . . tl tl+1 . . .

fj+1(t) . . . Wl Wl+1 = Wl . . .
OPS . . . πl πl+1 . . .

It is obvious that we will have at most Fopt break points

in the GrA, where Fopt ≤
n
∑

j=1

wj is the optimal total

weight of the on-time jobs. In each step j = 1, 2, . . . , n
of the GrA, we have to consider at most min{2j , dj −

pj ,
n
∑

i=j+1

pi,
j
∑

i=1

wi, Fopt} break points. Thus, the time

complexity of the GrA is O(min{2n, n ·min{dmax, Fopt}}).

3.2 A GrA for the Single Machine of Minimizing the
Number of Late Jobs when the Starting Time of the
Machine is Variable

In the standard model of problem 1||
∑

Uj , it is generally
assumed that the machine starts at time t0 = 0. In this
section, we abandon this assumption. We assume that it
is possible to start the machine at any possible time −G,
whereG ≥ 0. The quality of a feasible schedule is measured
by two criteria. The first one is the number of late jobs (or,
what is equivalent, the number of on-time jobs) and the
second one is the cost of the starting time of the machine.
We wish to find all n+1 Pareto-optimal schedules. Denote
this problem as 1|dj = d′j +G|

∑

Uj .

In Hoogeveen et al. (2010), an exact algorithm for this
problem with time complexity O(n4) has been proposed.
Next, we present an algorithm with time complexity
O(n2). First, we construct a modification of Algorithm
1, where wj = 1 for j = 1, 2, . . . , n, and in each
step j = 1, 2, . . . , n, we consider the interval [dmin −
n
∑

i=1

pi,
n
∑

i=j+1

pi]. The time complexity of the resulting algo-

rithm is O(n
∑

pj). The graphical modification of this al-
gorithm for problem 1|dj = d′j+G|

∑

Uj has the time com-

plexity O(nmin{dmax, 2
n,

n
∑

i=1

wi, Fopt}). Since
n
∑

i=1

wi = n,

the time complexity of the GrA for problem 1|dj = d′j +

G|
∑

Uj is O(n2). We recall that a ‘state’ t in the GrA
has the same meaning like −G, i.e., t denotes the starting
time of a (partial) sequence. Assume that in the last step
of the GrA, we have obtained the data given in Table 6.

Table 6: Function fn(t)
t t1 t2 . . . tn+1

fn(t) n n− 1 . . . 0
OPS π1 π2 . . . πn+1

This means that we have n + 1 Pareto-optimal solu-
tions described by the following pairs: (t2, n), (t3, n −
1), . . . , (tn+1 + 1, 0), where the first value is −G and the
second one is the number of on-time jobs. Moreover, we can
use the same idea of the GrA for the generalized problem
1|dj = d′j + G|

∑

wjUj but the time complexity of this
GrA is pseudo-polynomial.

3.3 A GrA for Maximizing Weighted Total Tardiness on
a Single Machine

Here we wish to maximize the value
n
∑

j=1

wjTj(π), where

each feasible schedule starts at time 0 and does not have
any idle time between the processing of jobs. The problem
is NP -hard (see Gafarov et al. (2010b)). First, we present
a property of an optimal schedule.

Lemma 2. For problem 1(nd)||max
∑

wjTj , there exists
an optimal schedule π = (G,H), where all jobs j ∈ H are
tardy and all jobs i ∈ G are on-time. All jobs from the set
G are processed in non-increasing order of values

wj

pj
and

all jobs from the set H are processed in non-decreasing
order of values

wj

pj
.

As a consequence, we obtain the following corollary.

Corollary 1. For the problem 1(nd)||max
∑

Tj , there ex-
ists an optimal schedule π = (G,H), where all jobs j ∈ H
are tardy and all jobs i ∈ G are on-time. All jobs from set
G are processed in SPT(shortest processing time) order
and all jobs from set H are processed in LPT(longest
processing time) order.

The proof of Corollary 1 has been presented in Gafarov
et al. (2010b). Lemma 2 can be proved analogously (or see
Lawler et al. (1969)). For problem 1(nd)||max

∑

wjTj , we
present the following pseudo-polynomial algorithm based
on Lemma 2.

Algorithm 2

1. Number the jobs such that w1

p1

≤ w2

p2

≤ . . . ≤ wn

pn
;

2. π1(t) := (1), f1(t) := w1 max{0, p1 + t − d1} for all

t ∈ Z with t ∈ [0,
n
∑

i=2

pi];

3. FOR j := 2 TO n DO

FOR t := 0 TO
n
∑

i=j+1

pi (t ∈ Z) DO

π1 := (j, πj−1(t+ pj)), π
2 := (πj−1(t), j);

Φ1(t) := wj max{0, pj+t−dj}+fj−1(t+pj);

Φ2(t) := fj−1(t)+wj max{0,
j
∑

i=1

pi+ t−dj};

If Φ1(t) > Φ2(t), then fj(t) := Φ1(t) and
πj(t) := π1

else fj(t) := Φ2(t) and πj(t) := π2;
4. πn(0) is an optimal sequence with the objective

function value fn(0).

F-406

πj(t) represents the best partial sequence of the jobs
1, 2, . . . , j when the first job starts at time t, and fj(t)
denotes the corresponding total weighted tardiness. For
this DPA, we have the following functional equations:

fj(t) = max



























Φ1(t) = wj max{0, pj + t− dj},
+fj−1(t+ pj) j = 1, n;

Φ2(t) = wj max{0,

j
∑

i=1

pi

+t− dj}+ fj−1(t), j = 1, n.

(4)

where f0(t) = 0 for all t ≥ 0.

Function Φ1(t) represents the setting xj = 1 (job j is
added as the first job of the corresponding partial sequence
of the first j − 1 jobs) while Φ2(t) represents the setting
xj = 0 (job j is added as the last job to the partial
sequence of the first j − 1 jobs).

Theorem 2. Algorithm 2 constructs an optimal schedule
in O(n

∑

pj) time.

The proof of a similar theorem for problem 1(nd)||max
∑

Tj

has been presented in Gafarov et al. (2010b). Moreover,
for t ≥ dmax, all jobs are tardy in each partial schedule
which starts at time t. Thus, we can reduce the time com-
plexity to O(ndmax). A similar algorithm for this problem
with time complexity O(n

∑

pj) has been presented in
Lawler et al. (1969). However, from Algorithm 2, it is
easy to construct the GrA. In each step of the GrA, we
store function fj(t) in tabular form as given in Table 7,
where TWTJ denotes the total weight of tardy jobs and
u1 < u2 < . . . < umj+1.

Table 7: Function fj(t)
t (−∞, t1] (t1, t2] . . . (tmj

,+∞)
fj(t) b1 = 0 b2 . . . bmj+1

TWTJ u1 = 0 u2 . . . umj+1

OPS π1 π2 . . . πmj+1

Note that the notations πj from Table 14 and πj(t) from
Algorithm 2 have a different meaning. The above data
means the following. For each value t ∈ (tl, tl+1], we have
an optimal partial sequence πl+1 with the total weight of
tardy jobs ul+1 and the function value fj(t) = bl+1 + (t−
tl) · ul+1. In Gafarov et al. (2010b), it has been shown
for the corresponding problem with unit weights that
this table represents a continuous, piecewise-linear and
convex function fj(t) which is also true for the problem
under consideration. The points t1, t2, . . . , tmj

are called
the break points since there is a change from value ul to
ul+1 (which means that the slope of the piecewise-linear
function changes). For describing each linear segment, we
store its slope ul+1 and its function value bl+1 at point
t = tl. In the following, we describe how function fj+1(t)
is determined by means of function fj(t).

Function Φ1(t) is obtained from function fj(t) by the
following operations. We shift the graph of function fj(t)
to the left by the value pj+1 and in the table for function
fj(t), we add a column which results from the new break
point t′ = dj+1 − pj+1. If tl − pj+1 < t′ < tl+1 − pj+1, l+
1 ≤ mj , then in the new table for Φ1(t), we have two new
intervals of t: (tl − pj+1, t

′] and (t′, tl+1 − pj+1]. Moreover,
we increase the values ul+1, ul+2, . . . , umj+1 by wj+1, i.e.,
the total weight of the tardy jobs (and thus the slope of

the corresponding function) increases. The corresponding
partial sequences π1 are obtained by adding job j + 1 as
the first job to each previous partial sequence.

Function Φ2(t) is obtained from function fj(t) by the
following operations. In the table for fj(t), we add a
column which results from the new break point t′ = dj+1−
j+1
∑

i=1

pi. If tl < t′ < tl+1, l + 1 ≤ mj , then in the new

table, we have two new intervals of t: (tl, t
′] and (t′, tl+1].

Moreover, we increase the values ul+1, ul+2, . . . , umj+1 by
wj+1, i.e., the total weight of tardy jobs increases. The
corresponding partial sequences π2 are obtained by adding
job j + 1 at the end to each previous partial sequence.

Now we construct a table that corresponds to the function
fj+1(t) = max{Φ1(t),Φ2(t)}. We compare the intervals
from both tables and search for intersection points of the
graphs of functions Φ1(t) and Φ2(t). This step requires
O(mj) operations. If in the table for function fj+1(t), we
have the situation displayed in Table 8, we cut the column,
which corresponds to interval (tl, tl+1], and combine both
intervals, i.e., we set tl := tl+1.

Table 8: Deletion of a column
t . . . (tl−1, tl] (tl, tl+1] . . .
fj+1(t)
TWTJ . . . ul ul+1 = ul . . .
OPS πj+1(t)

A detailed description, complexity results and a nu-
merical example of a similar algorithm for problem
1(nd)||max

∑

Tj have been presented in Gafarov et al.
(2010b). It is obvious that in each step j, j = 1, 2, . . . , n,

we have at most min{
n
∑

i=1

pi, dmax, O(2j),
j
∑

i=1

wi}+1 columns

in the corresponding table. Thus, the time complexity of
the GrA for problem 1(nd)||max

∑

wjTj is O(min{2n, n ·

min{dmax,
n
∑

j=1

wj}}). Moreover, since we have
n
∑

j=1

wj = n

for problem 1(nd)||max
∑

Tj , the time complexity of the
GrA reduces to O(n2) (Gafarov et al. (2010b)) in this case.

4. COMPUTATIONAL RESULTS

For problem 1||
∑

wjUj , we have run two sets of instances
for testing the graphical variant of Algorithm 1. The
first set is as follows: The processing times are randomly
generated from the interval [pmin, pmax], the weights are
randomly generated from [1, wmax], and the due dates are
randomly generated from [pj , pj + mmax]. The following
values of the parameters were used:

(pmin, pmax): (0,100), (25,75)
wmax: 1, 10, 100
mmax: 50, 200, 350, 500, 650

The second set is generated as follows. The processing
times are randomly generated from the interval [0, 100],
the weights are randomly generated from [1, wmax], and
the due dates are randomly generated from [pj , pj +Kn].
The following values of parameters were used:

wmax: 10, 99
K: 1, 5, 10, 20

F-407

Fig. 1. Computational Results

In both cases, for each combination of the parameters and
n ∈ {4, 5, . . . , 50}, a series of 2500 test instances has been
generated.

For each instance, we have computed the minimal (NBP-
MIN), average (NBP-AVE) and maximal (NBP-MAX)
number of break points. Fig. 1(a) and Fig. 1(b) present
the results for two representative combinations of the first
set, and Fig. 1(c) and Fig. 1(d) present the results for
two representative combinations of the second set. For
the instances of the first type, NBP only moderately
increases, and NBP-AVE is lower than 1000 even for the
large problems. Fig. 1(c) and Fig. 1(d) demonstrate the
influence of the parameter K on NBP. For K = 10, NBP
is roughly ten times as large as for K = 1.

As expected, the lengths of the intervals considered has
the strongest influence on NBP. The largest NBP were
observed for instances with mmax = 650 in the first set
and for instances with K = 20 in the second set. We also
have observed that in the first set of instances in the case
of wmax = 1 (wj = 1 for j ∈ N), NBP may substantially
differ from those of the other test series. For instance,
NBP-AVE in the series with wmax = 1,mmax = 50 is much
smaller than NBP-AVE for the case wmax = 10,mmax =
50. Whenmmax is large, e.g. whenmmax = 500 ormmax =
650, NBP in the series with wmax = 1 is considerably
smaller than in the series with other values of wmax.

5. CONCLUDING REMARKS

The graphical approach can be applied to problems, where
a pseudo-polynomial algorithm exists and Boolean vari-
ables are used in the sense that yes/no decisions have
to made. For the single machine problem of maximizing
total tardiness, the GrA improved the complexity from
O(n

∑

pj) to O(n2). Thus, the graphical approach has not
only a practical but also a theoretical importance.

REFERENCES

R. Bellman. Dynamic Programming. Princeton: Princeton
Univ. Press, 1957.

S.K. Sahni. Algorithms for scheduling independent jobs.
J. Assoc. Comput. Mach., vol. 23, 116–127, 1976.

E.L. Lawler, J.M. Moore. A functional equation and
its application to resource allocation and sequencing
problems. Management Sci., vol. 16, No. 1, 77–84, 1969.

H. Hoogeveen, V. T’Kindt. Minimizing the number of
late jobs when the start time of the machine is variable.
Proceedings PMS 2010, 235–238, 2010.

E.R. Gafarov, A.A. Lazarev and F. Werner. A note on a
single machine scheduling problem with generalized to-
tal tardiness objective function. Information Processing
Letters, vol. 112, No. 3, 72 – 76, 2012.

E.R. Gafarov, A.A. Lazarev and F. Werner. Trans-
forming a pseudo-polynomial algorithm for the single
machine total tardiness maximization problem into a
polynomial one. Annals of Operations Research, DOI
10.1007/s10479-011-1055-4, 2012, in print.

A.A. Lazarev, F. Werner. Algorithms for special cases
of the single machine total tardiness problem and an
application to the even-odd partition problem. Math.
Comp. Modelling, vol. 49, No. 9-10, 2061–2072, 2009.

F-408

