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Abstract We consider the problem of maximizing total tardiness on a single machine,
where the first job starts at time zero and idle times between the processing of jobs are
not allowed. We present a modification of an exact pseudo-polynomial algorithm based on a
graphical approach, which has a polynomial running time. This result settles the complexity
status of the problem under consideration which was open.

Keywords Scheduling · Single machine problems · Maximization problems · Total
tardiness · Polynomial algorithm

1 Introduction

Most papers in scheduling theory deal with problems, where a specific objective function has
to be minimized. For instance, the minimization of makespan is a very popular optimization
criterion. In the case when a sum function is considered, often total completion time, total
tardiness or the number of tardy jobs has to be minimized. In this paper, we consider a single
machine problem with the opposite criterion, namely, we consider the maximization of total
tardiness.

In detail, the problem under consideration can be formulated as follows. We are given
a set N = {1,2, . . . , n} of n independent jobs that must be processed on a single machine.
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Job preemption is not allowed. The machine can handle only one job at a time. All jobs
are assumed to be available for processing at time 0. For each job j ∈ N , a processing time
pj > 0 and a due date dj are given.

We assume that each feasible schedule starts at time 0 and does not have any idle time
between the processing of the jobs (note that the maximization problem considered in this
paper would be trivial when allowing inserted idle times, since the maximal objective func-
tion value can become arbitrarily large in this case). Thus, a feasible solution is described by
a permutation π = (j1, j2, . . . , jn) of the jobs of the set N from which the correspond-
ing schedule can be uniquely determined by starting each job as early as possible. Let
Cjk (π) = ∑k

l=1 pjl be the completion time of job jk in the schedule resulting from the se-
quence π . If Cj(π) > dj , then job j is tardy. If Cj(π) ≤ dj , then job j is on-time. Moreover,
let Tj (π) = max{0,Cj (π) − dj } be the tardiness of job j in the schedule resulting from se-
quence π . The objective is to find an optimal job sequence π∗ that maximizes total tardiness,
i.e., F(π) = ∑n

j=1 Tj (π). We denote this problem by 1(no-idle)||max
∑

Tj . In addition, let
Ej(π) = max{0, dj − Cj(π)}, Uj(π) = 1 if Tj (π) > 0 and Uj(π) = 0 otherwise.

In the following, the notation {π} denotes the set of jobs contained in the sequence π .
The notation i ∈ π means i ∈ {π}. For the sequence π = (π1, i, π2), the notation π \ {i}
means (π1,π2).

On the one hand, the investigation of a particular problem with the maximum criterion
is an important theoretical task. Algorithms for such a problem with the maximum crite-
rion can be used to cut bad sub-problems in the branching tree of branch-and-bound al-
gorithms. So the maximal number of tardy jobs determined by the algorithm for the prob-
lem 1(no-idle)||max

∑
Uj from Gafarov et al. (2010a) can be used to reduce the search

for an optimal solution of the problem 1(no-idle)||max
∑

Tj . Moreover, we can use the
value max

∑
Tj for the computation of an upper bound on the optimum in the problem

1||min(α
∑

Ej + β
∑

Tj ), i.e., if α > β , then we can ‘fix’ the maximal value β
∑

Tj and
search for an optimal schedule for the criterion min

∑
Ej . In Aloulou and Artigues (2010),

maximization problems were used for solving bi-criteria problems by a branch and bound
method. In addition, it is interesting whether polynomially solvable cases of the minimiza-
tion problem are also easy when maximizing the corresponding objective function, or vice
versa.

On the other hand, such problems have also practical interpretations and applications.
For example, an installation team has to mount wind turbines in various regions of a large
country. The required time for mounting the turbines in a particular region (which is a job)
depends on the number of turbines (i.e., each job j has a particular processing time pj ) and
is not dependent on weather or climatic conditions. However, weather influences some costs
(e.g., covering of snow may increase fuel consumption, the salary of the workers and/or the
cost of accommodation for the workers which might be higher in winter). Such additional
costs begin to decrease after the beginning of a particular season. For each region of the
country (i.e., for each corresponding job j ), it is known in which week this season can
be expected to start (interpreted as a due date dj ). All jobs must be executed in the time
interval [0,

∑
pj ], where

∑
pj is the total processing time of the jobs. The objective is the

minimization of these additional costs. In fact, this optimization criterion can be formulated
as max

∑
max{0, Sj − d ′

j }, where Sj = Cj − pj and d ′
j = dj − pj , i.e., the problem 1(no-

idle)||max
∑

Tj is obtained. Another situation arises when the company is considered as a
customer, and one wants to know the worst variant of a schedule, which is computed in a
‘black box’ (e.g. in a plant).

It is easy to show that each of the problems 1(no-idle)||max
∑

Tj and
1(no-idle)||max

∑
Ej can be polynomially reduced to the other one. Assume that we
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have an instance of the problem 1(no-idle)||max
∑

Ej and an optimal job sequence
π = (1,2, . . . , n). We construct an instance of the problem 1(no-idle)||max

∑
Tj as fol-

lows. The set of jobs and the processing times are the same. In addition, we set d ′
j =∑n

i=1 pi − dj + pj . Then the sequence π ′ = (n,n − 1, . . . ,1) is optimal for the above
instance of the problem 1(no-idle)||max

∑
Tj . We have Cj(π

′) − pj = ∑
pi − Cj(π).

Therefore, Cj(π
′) − d ′

j = (
∑

pi − Cj(π) + pj ) − (
∑

pi − dj + pj ) = dj − Cj(π).
We note that for the problem 1(no-idle)||max

∑
Ej , we can drop the assumption that

‘idle times are not allowed’. In addition, we can give the following interpretation for this
problem. A worker has to complete a set of jobs. If he completes a job j before the due date
dj , then he obtains a bonus which is proportional to dj − Cj . The objective is to maximize
the total bonus. Both the problems 1(no-idle)||max

∑
Ej and 1(no-idle)||max

∑
Tj were

mentioned in Lawler and Moore (1969), where a pseudo-polynomial algorithm with time
complexity O(ndmax) was presented for the more general problem 1(no-idle)||max

∑
wjTj

(Here wj is the weight of job j ∈ N and dmax is the maximal due date). However, the com-
plexity status of this problem was open for a long time, and only in Gafarov et al. (2010b) a
proof of NP-hardness of the problem 1(no-idle)||max

∑
wjTj was presented. For the prob-

lem 1||min
∑

wjTj , a branch and bound algorithm was given in Babu et al. (2004) and a
simulated annealing algorithm was presented in Matsuo et al. (1989).

The problem 1||min
∑

Tj is NP-hard in the ordinary sense (Du and Leung 1990;
Lazarev and Gafarov 2006a). A pseudo-polynomial dynamic programming algorithm of
time complexity O(n4

∑
pj ) was proposed by Lawler (1977). The algorithms by Szwarc et

al. (1999) can solve special instances (Potts and Van Wassenhove 1982) of this problem for
n ≤ 500 jobs. A summary of polynomially and pseudo-polynomially solvable special cases
can be found, e.g., in Lazarev and Werner (2009b). A pseudo-polynomial time algorithm for
the problem 1(no-idle)||max

∑
Tj was presented in Gafarov et al. (2010a). In Gafarov et

al. (2010a, 2010c), Aloulou et al. (2004, 2007), the complexity of single machine schedul-
ing problems with classical and maximum optimization criteria was investigated. In Posner
(1990), the reducibility among single machine weighted completion time scheduling prob-
lems including both minimization and maximization problems was studied. The constraints
considered include release dates, deadlines, and continuous machine processing.

For a practical realization of some pseudo-polynomial algorithms, one can use the idea
from Lazarev and Werner (2009a). This modification of pseudo-polynomial algorithms for
combinatorial problems with Boolean variables (e.g. problems, where a job can be on-time
or tardy, or an item is put into the knapsack or not) is called a graphical approach.

In this paper, we present such a graphical modification of a pseudo-polynomial algorithm
for the problem 1(no-idle)||max

∑
Tj , and we prove that the suggested graphical algorithm

has a polynomial time complexity. This is in contrast to the pseudo-polynomial complexity
of the best known exact algorithm for the problem of minimizing total tardiness on a single
machine.

The rest of this paper is organized as follows. In Sect. 2, an exact pseudo-polynomial al-
gorithm for the problem 1(no-idle)||max

∑
Tj is presented. A modification of this pseudo-

polynomial algorithm for the problem 1(no-idle)||max
∑

Tj and the proof of its polynomial
running time are given in Sect. 3. In Sect. 4, a numerical example for illustrating this algo-
rithm is presented.

2 A pseudo-polynomial time algorithm for problem 1(no-idle)||max
∑

Tj

In this section, we present a property of an optimal sequence and an exact algorithm for the
problem under consideration which are the base for the modification in Sect. 3.

Author's personal copy
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Lemma 1 (Gafarov et al. 2010a) There exists an optimal job sequence π for the problem
1(no-idle)||max

∑
Tj that can be represented as a concatenation (G,H), where all jobs

j ∈ H are tardy and all jobs i ∈ G are on-time. All jobs from the set G are processed in SPT
(shortest processing time) order and all jobs from the set H are processed in LPT (longest
processing time) order.

Assume that the jobs are numbered as follows: p1 ≥ p2 ≥ · · · ≥ pn. As a corollary from
Lemma 1, for each l ∈ {1,2, . . . , n} there exists an optimal schedule in which all jobs j ∈
{1,2, . . . , l} are processed from time t one by one, and there is no job i ∈ {l +1, l +2, . . . , n}
which is processed between these jobs. Thus, we can present a dynamic programming algo-
rithm based on Lemma 1. At each stage l,1 ≤ l ≤ n, we construct a best partial sequence
πl(t) for the set of jobs {1,2, . . . , l} and for each possible starting time t of the first job
(which represents a possible state in the dynamic programming algorithm). Fl(t) denotes
the total tardiness value of the job sequence πl(t). Φ1(t) and Φ2(t) are temporary functions,
which are used to compute Fl(t).

Algorithm 1

1. Number the jobs according to non-increasing processing times: p1 ≥ p2 ≥ · · · ≥ pn.
If pi = pi+1, then di ≥ di+1;

2. FOR t := 0 TO
∑n

j=2 pj DO
π1(t) := (1), F1(t) := max{0,p1 + t − d1};

3. FOR l := 2 TO n DO
FOR t := 0 TO

∑n

j=l+1 pj DO
π1 := (l,πl−1(t + pl)), π2 := (πl−1(t), l);
Φ1(t) := max{0,pl + t − dl} + Fl−1(t + pl);
Φ2(t) := Fl−1(t) + max{0,

∑l

j=1 pj + t − dl};
IF Φ1(t) > Φ2(t) THEN Fl(t) := Φ1(t) and πl(t) := π1,
ELSE Fl(t) := Φ2(t) and πl(t) := π2;

4. πn(0) is an optimal schedule with the objective function value Fn(0).

Theorem 1 Algorithm 1 constructs an optimal job sequence in O(n
∑

pj ) time.

Proof We prove the theorem indirectly. Assume that there exists an optimal schedule of the
form π∗ = (G,H), where all jobs j ∈ H are tardy and all jobs i ∈ G are on-time. All jobs
from the set G are processed in SPT (shortest processing time) order and all jobs from the set
H are processed in LPT (longest processing time) order. Assume that F(π∗) > F(πn(0)) =
Fn(0).

Let π ′ := π∗. For each l = 1,2, . . . , n, we successively consider the part π̄l ∈ π ′ of the
schedule with {π̄l} = {1,2, . . . , l}. Let π ′ = (πα, π̄l, πβ) and t∗ = ∑

i∈πα
pi . If π̄l �= πl(t

∗),
then π ′ := (πα,πl(t

∗),πβ). It is obvious that F((πα, π̄l, πβ)) ≤ F((πα,πl(t
∗),πβ)). Apply-

ing this procedure to subsequent values l, we have F(π∗) ≤ F(π ′) = Fn(0) at the end. Thus,
the schedule πn(0) is also optimal.

Obviously, the time complexity of Algorithm 1 is equal to O(n
∑

pj ). �

3 A polynomial time algorithm for problem 1(no-idle)||max
∑

Tj

In this section, we derive a new graphical algorithm for this problem which is based on an
idea from Lazarev and Werner (2009a). The graphical algorithm is a modification of Algo-
rithm 1, in which function Fl(t) is defined for any t ∈ (−∞,+∞) (not only for integer t ).

Author's personal copy
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Table 1 Function Fl(t)

k 1 2 . . . wl + 1

Interval k (−∞, t1
l
] (t1

l
, t2

l
] . . . (t

wl
l

,+∞)

bk
l

0 b2
l

. . . b
wl+1
l

uk
l

0 u2
l

. . . u
wl+1
l

πk
l

π1
l

π2
l

. . . π
wl+1
l

However, we need to compute these values only at the break points separating intervals in
which function Fl(t) is a linear function of the form Fl(t) = Fk

l (t) = uk
l · (t − tk−1

l ) + bk
l .

In Theorem 2, we are to prove that Fl(t) is a continuous piecewise linear convex function
whose parameters can be described in a tabular form (like in Table 1). In contrast to Al-
gorithm 1 having a pseudo-polynomial complexity, the number of such points (and of the
resulting intervals, respectively) is polynomially bounded in the number of jobs for the prob-
lem under consideration, as we show below. Together with the graphical algorithm in this
section, we present a numerical example in Sect. 4 to illustrate the graphical algorithm.

In each step of the graphical algorithm, we store the information on function Fl(t) for
a number of intervals (characterized by the same best partial sequence and by the same
number of tardy jobs) in a tabular form as given in Table 1.

In Table 1, k denotes the number of the current interval, whose values range from 1 to
wl + 1 (where the number of intervals wl + 1 is defined for each l = 1,2, . . . , n), (tk−1

l , t kl ]
is the kth interval (where t0

l = −∞, t
wl+1
l = ∞), bk

l , uk
l are the parameters of the linear

function Fk
l (t) defined in the kth interval, and πk

l is the best sequence of the first l jobs if
they are processed from time t ∈ (tk−1

l , t kl ].
This data means the following. For each above interval, we store the parameters bk

l and
uk

l for describing function Fl(t) and the resulting best partial sequence if the first job starts
in this interval. For each starting time t ∈ (tk−1

l , t kl ] (t0
l = −∞) of the first job, we have a

best partial sequence πk
l of the jobs 1,2, . . . , l with uk

l tardy jobs and the function value
Fl(t) = uk

l · (t − tk−1
l ) + bk

l (see Fig. 1), Fl(t) = 0 for t ∈ (t0
l , t1

l ]. Recall that function Fl(t)

is defined not only for integers t , but also for real numbers t . For simplicity of the following
description, we consider the whole t -axis, i.e., t ∈ (−∞,+∞). In Theorem 2, we prove that
this table describes a continuous, piecewise-linear and convex function Fl(t). The points
t1
l , t2

l , . . . , t
wl

l are called break points, since there is a change from value uk−1
l to uk

l (which

Fig. 1 Function Fl(t) in the graphical algorithm and in Algorithm 1

Author's personal copy
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Table 2 Function F1(t)

k 1 2

Interval k (−∞, d1 − p1] (d1 − p1,+∞)

bk
1 0 0

uk
1 0 1

πk
1 (1) (1)

Table 3 Function Fl−1(t)

k 1 2 . . . wl−1 + 1

Interval k (−∞, t1
l−1] (t1

l−1, t2
l−1] . . . (t

wl−1
l−1 ,+∞)

bk
l−1 0 b2

l−1 . . . b
wl−1+1
l−1

uk
l−1 0 u2

l−1 . . . u
wl−1+1
l−1

πk
l−1 π1

l−1 π2
l−1 . . . π

wl−1+1
l−1

means that the slope of the piecewise-linear function changes). Note that some of the break
points tkl can be non-integer. For describing each linear segment, we store its slope uk

l and
its function value bk

l = Fl(t) at the point t = tk−1
l .

In the graphical algorithm, the functions Fl(t) reflect the same functional equations as in
Algorithm 1, i.e., for each t ∈ Z ∩ [0,

∑n

j=2 pj ], the function Fl(t) has the same value as in
Algorithm 1 (see Fig. 1), but these functions are now defined for any t ∈ (−∞,+∞). As
a result, often a large number of integer states is combined into one interval (describing a
new state in the resulting algorithm) with the same best partial sequence. In Fig. 1(a), the
function Fl(t) from the graphical algorithm is presented and in Fig. 1(b), the function Fl(t)

from Algorithm 1 is displayed.
Next, we describe the graphical algorithm. The core is Step 3, where we describe how

the states at stage l, l > 1, are obtained if the states at stage l − 1 are known.

Graphical algorithm

Step 1. We number the jobs as follows: p1 ≥ p2 ≥ · · · ≥ pn. If pi = pi+1, then di ≥ di+1;
Step 2. We set l := 1, π1

1 (t) := (1), F1(t) := max{0,p1 + t − d1} for all t . We represent
function F1(t) in a tabular form as given in Table 2. For both intervals, we have the same
best partial sequence (1). For t ∈ (−∞, d1 − p1], there is no tardy job in the schedule
corresponding to sequence (1) when this job is started at time t and for t ∈ (d1 −p1,+∞),
there is one tardy job.

Step 3. Let l > 1 and assume that function Fl−1(t) and the best partial sequences of the jobs
{1,2, . . . , l − 1} for all resulting intervals given in Table 3 are known.
In the following, we describe how function Fl(t) is obtained by means of function Fl−1(t).
We note that we can store the temporary functions Φ1(t) and Φ2(t) determined in Steps
3.1 and 3.2 also in a tabular form as in Table 1.

Step 3.1. The function Φ1(t) is obtained from function Fl−1(t) by the following operations.
We shift the diagram of function Fl−1(t) to the left by the value pl and in the table for
function Fl−1(t), we add a column which results from the new break point t ′ = dl − pl . If
t sl−1 −pl < t ′ < ts+1

l−1 −pl, s +1 ≤ wl−1, then we have two new intervals of t in the table for

Author's personal copy
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Φ1(t): (t sl−1 − pl, t
′] and (t ′, t s+1

l−1 − pl] (for s = wl−1, we have (t
wl−1
l−1 − pl, t

′] and (t ′,∞)).
This means that we first replace each interval (tkl−1, t

k+1
l−1 ] by (tkl−1 − pl, t

k+1
l−1 − pl] in the

table for Φ1(t), and then we replace the column with the interval (tsl−1 − pl, t
s+1
l−1 − pl] by

two new columns with the intervals (tsl−1 − pl, t
′] and (t ′, t s+1

l−1 − pl].
Moreover, we increase the values us+1

l−1 , us+2
l−1 , . . . , u

wl−1+1
l−1 by 1, i.e., the number of tardy

jobs (and thus the slope of the function) increases. The corresponding partial sequences
π1 are obtained by adding job l as the first job to each previous partial sequence. In this
way, we obtain the information on function Φ1(t) together with the corresponding partial
sequences given in Table 4, which also includes the calculation of the corresponding b

values.
Step 3.2. The function Φ2(t) is obtained from function Fl−1(t) by the following operations.

In the table for Fl−1(t), we add a column which results from the new break point t ′′ =
dl − ∑l

i=1 pi . If thl−1 < t ′′ < th+1
l−1 , h + 1 ≤ wl−1, then we have two new intervals of t in the

table for Φ2(t): (thl−1, t
′′] and (t ′′, th+1

l−1 ] (for h = wl−1, we have (t
wl−1
l−1 , t ′′] and (t ′′,∞)).

This means that we replace the column with the interval (thl−1, t
h+1
l−1 ] by two new columns

with the intervals (thl−1, t
′′] and (t ′′, th+1

l−1 ].
Moreover, we increase the values uh+1

l−1 , uh+2
l−1 , . . . , u

wl−1+1
l−1 by 1, i.e., the number of tardy

jobs increases. The corresponding partial sequences π2 are obtained by adding job l at the
end to each previous partial sequence. In this way, we obtain the information on function
Φ2(t) together with the corresponding partial sequences given in Table 5.

Step 3.3. Now we construct a table that corresponds to the function

Fl(t) = max{Φ1(t),Φ2(t)}.
We consider all resulting intervals from both tables and search for intersection points of the
diagrams of functions Φ1(t) and Φ2(t). Then we construct function Fl(t) as the maximum
of both functions obtained.
To be more precise, we construct a list t1, t2, . . . , te, t1 < t2 < · · · , te , of all break points t

from the tables for Φ1(t) and Φ2(t), which are left / right boundary points of the intervals
given in these tables. Then we consider each interval (ti , ti+1], i = 1,2, . . . , e − 1, and
compare the two functions Φ1(t) and Φ2(t) over this interval. Let the interval (ti , ti+1] be
contained in the interval (tx−1, tx] from the table for Φ1(t) and in the interval (ty−1, ty] from
the table for Φ2(t). Then Φ1(t) = (t − tx−1) · ux + bx and Φ2(t) = (t − ty−1) · uy + by . We
choose the column from both tables corresponding to the maximum of the two functions
in the interval (ti , ti+1] and insert this column into the table for Fl(t). If there exists an
intersection point t ′′′ of Φ1(t) and Φ2(t) in this interval, then we insert two columns with
the intervals (ti , t

′′′] and (t ′′′, ti+1].
This step requires O(wl−1) operations. If we obtain two subsequent intervals with the same
number of tardy jobs in the table for function Fl(t) (see Table 6), we delete the column
corresponding to interval (tkl , tk+1

l ] and combine both intervals, i.e., we set tkl := tk+1
l (the

values bk
l , u

k
l and the sequence πk

l in the column corresponding to the interval (tk−1
l , t kl ]

remain the same).
In Theorem 2, we prove that for each stage l the number of intervals is less than or equal
to l + 1 ≤ n + 1.

Step 3.4. If l = n, then GOTO 4 else l := l + 1 and GOTO 3.
Step 4. In the table corresponding to function Fn(t) we determine the column (tkn , tk+1

n ],
where tkn < 0 ≤ tk+1

n . Then we have an optimal sequence π∗ = πk+1
n and the optimal func-

tion value F(π∗) = bk+1
n + (0 − tkn ) · uk+1

n .
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Table 6 Deletion of a column
Interval k . . . (tk−1

l
, tk

l
] (tk

l
, tk+1

l
] . . .

bk
l

. . . . . . . . . . . .

uk
l

. . . uk
l

uk+1
l

= uk
l

. . .

πk
l

. . . . . . . . . . . .

Table 7 Function Fl(t)

k 1 2 . . . s s + 1 . . . wl + 1

Interval k (−∞, t1
l
] (t1

l
, t2

l
] . . . (ts−1

l
, ts

l
] (ts

l
, ts+1

l
] . . . (t

wl
l

,+∞)

bk
l

0 b2
l

. . . bs
l

bs+1
l

. . . b
wl+1
l

uk
l

0 u2
l

. . . us
l

us+1
l

. . . u
wl+1
l

πk
l

π1
l

π2
l

. . . πs
l

πs+1
l

. . . π
wl+1
l

Theorem 2 The graphical algorithm constructs an optimal job sequence for the problem
1(no-idle)||max

∑
Tj in O(n2) time.

Proof First, we prove that all functions Fl(t), l = 1,2, . . . , n, defined at the beginning of
Sect. 3 are continuous, piecewise linear and convex functions.

It is obvious that function F1(t) is a continuous, piecewise linear and convex function
with one break point. According to the operations described in Step 3, both functions Φ1(t)

and Φ2(t) are also continuous, piecewise linear and convex functions. Thus, function

F2(t) = max{Φ1(t),Φ2(t)}

is a continuous, piecewise linear and convex function as well. Continuing in this way, we
obtain that all functions Fl(t), l = 1,2, . . . , n, have the above properties.

Now assume that we have obtained Table 7 for some function Fl(t) in Step 3.
We prove that u1

l < u2
l < · · · < us

l < us+1
l < · · · < u

wl+1
l holds. Assume that we have

us
l > us+1

l . Let F(π, t) be the total tardiness value of the sequence π when the first job starts
at time t . For each t ∈ (t sl , t

s+1
l ], we have F(πs

l , t) > F(πs+1
l , t), since for the number of

tardy jobs we have us
l > us+1

l which gives a contradiction1. We recall that function Fl(t) is
a continuous, piecewise linear function and that bs+1

l = bs
l + (t sl − t s−1

l ) · us
l . If us

l = us+1
l ,

then we delete the column with us+1
l and combine both intervals.

For the numbers of tardy jobs, we have u1
l < u2

l < · · · < us
l < us+1

l < · · · < u
wl+1
l , where

wl + 1 ≤ l + 1 ≤ n + 1. Thus, we have at most l break points (and at most l + 1 ≤ n + 1
intervals) in the table for each function Fl(t), l = 1,2, . . . , n. Therefore, Step 3 requires
O(n) operations for each l = 1,2, . . . , n.

1Note that we can prove that u1
l

< · · · < u
wl+1
l

holds also in another way. Functions Φ1(t) and Φ2(t) are
convex and thus, function

Fl(t) = max{Φ1(t),Φ2(t)}
is convex as well. The value us

l
corresponds to tanα, where α is the angle between the t -axis and the linear

segment of Fl(t) (see Fig. 1).
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According to the graphical algorithm, it is obvious that at each integer point t , the value
Fl(t) is equal to that determined by Algorithm 1 (since in the graphical algorithm, the func-
tions Fl(t) represent the same equations as in Algorithm 1 for the integer values t consid-
ered). Therefore, the graphical algorithm returns the optimal value Fn(0) and constructs an
optimal sequence in O(n2) time. �

In Lazarev and Gafarov (2006b), the authors use the same idea to improve a pseudo-
polynomial algorithm for the NP-hard special case B-1 (Lazarev and Gafarov 2006a) of the
problem 1||min

∑
Tj . However, in this case the graphical modification of this algorithm

remains pseudo-polynomial since in that paper, function

Fl(t) = min{Φ1(t),Φ2(t)}
is used which is not convex.

4 A numerical example

For illustration, we consider an instance of the problem 1(no-idle)||max
∑

Tj with the data
given in Table 8.

Now we consider subsequently all stages l = 1, . . . ,4 of the graphical algorithm and store
all necessary information on the states used in the graphical algorithm in a tabular form.

Consider the stage l = 1, i.e., we consider job 1. We obtain the only break point
d1 − p1 = 2, since this is the starting time after which job 1 becomes tardy. We get two
columns depending on whether job 1 is on-time or tardy and store the information on Func-
tion F1(t) given in Table 9 (it corresponds to Table 2 presented in Step 2 in Sect. 3). The
diagram of function F1(t) is displayed in Fig. 2(a).

Now we consider the stage l = 2, i.e., we consider job 2 and obtain the following results.
To determine function Φ1(t) for l = 2, we sequence job 2 as the first job. According to
Step 3.1 of the graphical algorithm, we shift all intervals given in Table 9 for function F1(t)

to the left by p2 = 22, i.e., in the resulting table we have two columns with the intervals
(−∞,−20] and (−20,+∞). Then we compute the new break point t ′ = d2 − p2 = 13. For
each sequence of the first l jobs, where the first job l = 2 starts at time t , the job l = 2 is
on-time for each t ≤ t ′, and the job l = 2 is tardy for each t > t ′. This means that at this
point t ′, the number of tardy jobs increases (i.e., the slope of the piecewise-linear function
Φ1(t) changes). Then we split the column corresponding to the interval (−20,+∞) into two

Table 8 Data of the instance
j 1 2 3 4

pj 30 22 12 5

dj 32 35 38 40

Table 9 Function F1(t)

Interval k (−∞,2] (2,+∞)

bk
1 0 0

uk
1 0 1

πk
1 (1) (1)
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Fig. 2 Example
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Table 10 Function Φ1(t) for
l = 2

Interval k (−∞,−20] (−20,13] (13,+∞)

bk 0 0 33

uk 0 1 2

π1 (2,1) (2,1) (2,1)

Table 11 Function Φ2(t) for
l = 2

Interval k (−∞,−17] (−17,2] (2,+∞)

bk 0 0 19

uk 0 1 2

π2 (1,2) (1,2) (1,2)

Table 12 Function F2(t)

Interval k (−∞,−20] (−20,5] (5,+∞)

bk
2 0 0 25

uk
2 0 1 2

πk
2 (2,1) (2,1) (1,2)

columns representing the intervals (−20,13] and (13,+∞) since t ′ = 13 ∈ (−20,+∞).
Thus, we get the information given on function Φ1(t) together with the corresponding best
partial sequences in Table 10 which has three columns (i.e., the number of tardy jobs can be
0, 1 or 2).

To determine function Φ2(t) for l = 2, we add job 2 to the end of a partial sequence.
According to Step 3.2 of the graphical algorithm, we compute the new break point t ′′ =
d2 − (p1 +p2) = −17. For any sequence of the first l jobs, where the first job starts at time t

and job l = 2 is the last job, job 2 is tardy for t > t ′′ with t ′′ = −17 ∈ (−∞,2]. Therefore, we
split the column corresponding to the interval (−∞,2] into two columns with the intervals
(−∞,−17] and (−17,2]. We obtain the information on function Φ2(t) for l = 2 together
with the corresponding partial sequences given in Table 11.

Now according to Step 3.3, we combine the tables for functions Φ1(t) and Φ2(t). We
consider each of the intervals (−∞,−20], (−20,−17], (−17,2], (2,13] and (13,+∞),
which result from the break points given in the two tables and check whether there exist
intersection points of functions Φ1(t) and Φ2(t) in these intervals. We remind that functions
Φ1(t) and Φ2(t) are defined as functions of the type uk · (t − tk−1) + bk .

For t ∈ (2,13], we obtain from Φ1(t) = (t + 20) · 1 + 0 = Φ2(t) = (t − 2) · 2 + 19 the
intersection point (5,25) (for the other intervals, intersection points do not exist). For t ≤ 5,
we have Φ1(t) = max{Φ1(t),Φ2(t)}, and for t > 5, we have Φ2(t) = max{Φ1(t),Φ2(t)},
i.e., for t ≤ 5, the partial sequence (2,1) corresponding to Φ1(t) is better, while for t > 5,
the partial sequence (1,2) corresponding to Φ2(t) is better. Therefore, to construct the table
for function F2(t), we get the columns with the intervals (−∞,−20] and (−20,5] from the
table for Φ1(t) and the column (5,+∞) ⊂ (2,+∞) from the table for Φ2(t).

Thus, combining the results from the two tables for Φ1(t) and Φ2(t), we obtain the
information on function F2(t) together with the best partial sequences for the corresponding
intervals given in Table 12. The diagram of function F2(t) is displayed in Fig. 2(c) obtained
from Fig. 2(b).

Now we consider the stage l = 3, i.e., we sequence job 3 and obtain the following results.
To determine function Φ1(t) for l = 3, we sequence job 3 as the first one and shift all
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Table 13 Function Φ1(t) for
l = 3

Interval k (−∞,−32] (−32,−7] (−7,26] (26,+∞)

bk 0 0 25 91

uk 0 1 2 3

π1 (3,2,1) (3,2,1) (3,1,2) (3,1,2)

Table 14 Function Φ2(t) for
l = 3

Interval k (−∞,−26] (−26,−20] (−20,5] (5,+∞)

bk 0 0 6 56

uk 0 1 2 3

π2 (2,1,3) (2,1,3) (2,1,3) (1,2,3)

Table 15 Function F3(t)

Interval k (−∞,−32] (−32,−14] (−14,5] (5,+∞)

bk
3 0 0 18 56

uk
3 0 1 2 3

πk
3 (3,2,1) (3,2,1) (2,1,3) (1,2,3)

Table 16 Function Φ1(t) for
l = 4

Interval k (−∞,−37] (−37,−19] (−19,0] (0,35] (35,+∞)

bk 0 0 18 56 161

uk 0 1 2 3 4

π1 (4,3,2,1) (4,3,2,1) (4,2,1,3) (4,1,2,3) (4,1,2,3)

intervals given in Table 12 to the left by p3 = 12. We get the new break point t ′ = d3 −p3 =
26 and obtain the information on function Φ1(t) together with the corresponding partial
sequences for l = 3 given in Table 13.

To determine function Φ2(t) for l = 3, we sequence job 3 as the last one and get the new
break point t ′′ = d3 − (p1 + p2 + p3) = −26. We obtain the information on function Φ2(t)

for l = 3 together with the corresponding partial sequences given in Table 14.
The only intersection point of the diagrams of functions Φ1(t) and Φ2(t) is (−14,18).

Thus, we obtain the information on function F3(t) and the best partial sequences given in
Table 15. The diagram of function F3(t) is displayed in Fig. 2(d).

Finally, we consider the stage l = 4, i.e., we sequence job 4 and obtain the following
results. To determine function Φ1(t) for l = 4, we sequence job 4 as the first one and get the
new break point t ′ = d4 − p4 = 35. We obtain the information on function Φ1(t) for l = 4
together with the corresponding partial sequences given in Table 16.

To determine function Φ2(t) for l = 4, we sequence job 4 as the last one and get the new
break point t ′′ = d4 − (p1 + p2 + p3 + p4) = −29. We obtain the information on function
Φ2(t) together with the corresponding partial sequences for l = 4 given in Table 17.

The only intersection point of the diagrams of functions Φ1(t) and Φ2(t) is (−24,13).
Thus, we obtain the information on function F4(t) and the corresponding best partial se-
quences given in Table 18. The diagram of function F4(t) is displayed in Fig. 2(e).

The optimal objective function value is F4(0) = 33 + 14 · 3 = 75, and the resulting opti-
mal job sequence is π∗ = (2,1,3,4).
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Table 17 Function Φ2(t) for
l = 4

Interval k (−∞,−32] (−32,−29] (−29,−14] (−14,5] (5,+∞)

bk 0 0 3 33 90

uk 0 1 2 3 4

π2 (3,2,1,4) (3,2,1,4) (3,2,1,4) (2,1,3,4) (1,2,3,4)

Table 18 Function F4(t)

Interval k (−∞,−37] (−37,−24] (−24,−14] (−14,5] (5,+∞)

bk
4 0 0 13 33 90

uk
4 0 1 2 3 4

πk
4 (4,3,2,1) (4,3,2,1) (3,2,1,4) (2,1,3,4) (1,2,3,4)

5 Concluding remarks

In this paper, we used a graphical approach to improve a known pseudo-polynomial algo-
rithm for the problem 1(no-idle)||max

∑
Tj in such a way that the resulting algorithm has

a running time of O(n2). This polynomial algorithm also settled the complexity status of
this problem which was open up to now. The polynomial solvability of this problem is in
contrast to the minimization version of this problem which is known to be NP-hard.

The idea of the algorithm presented in this paper can also be used to solve the NP-
hard problem 1(no-idle)||max

∑
wjTj considered in Lawler and Moore (1969), Gafarov et

al. (2010b). The graphical modification of the pseudo-polynomial dynamic programming
algorithm has a time complexity of O(min{2n, n · min{F,dmax}}) instead of O(ndmax) for
the algorithm from Lawler and Moore (1969), where F ≤ ∑

wj denotes the total weight of
the tardy jobs in an optimal schedule.

The graphical approach can be applied to problems, where a pseudo-polynomial algo-
rithm exists and Boolean variables are used in the sense that yes/no decisions have to be
made. However, for the knapsack problem, the graphical algorithm mostly reduces sub-
stantially the number of states to be considered but the time complexity of the algorithm
remains pseudo-polynomial. For the single machine problem of maximizing total tardi-
ness, the graphical algorithm improved the complexity from O(n

∑
pj ) to O(n2). Thus,

the graphical approach is not only of a practical but also of a theoretical importance.
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