О международных соревнованиях по глобальной оптимизации траекторий

GTOC — Global Trajectory Optimization Competitions

Самохин А.С. 38 лаборатория ИПУ РАН

29 ноября 2021

The Global Trajectory Optimization Competition — это соревнования, проводимые раз в два года в течение примерно одного месяца, во время которого лучшие аэрокосмические инженеры и математики всего мира пытаются решить "почти невозможную" задачу по проектированию межпланетных траекторий.

Условия задачи очередных соревнований определяет команда-победитель предыдущего выпуска, которая также вольна полностью определять правила соревнований.

Проблема должна быть связана с проектированием межпланетных траекторий, а ее сложность должна быть достаточно высокой, чтобы обеспечить явного победителя конкурса. За прошедшие годы различные постановки задач и полученные решения дали внушительный вклад в теорию и методологию решения таких сложных задач для научного сообщества.

Соревнования GTOC открыты для всех желающих, чтобы принять участие в очередном издании, посетите <u>https://sophia.estec.esa.int/gtoc_portal/</u>

GTOC 1 – cup of rocket science "Save the Earth"

The main objective of the optimisation is to maximise the change in the semi-major axis of the asteroid 2001 TW229 subsequent to the **impact of** an electric propelled **spacecraft**: $J = m_f |\vec{U}_{rel} \cdot \vec{v}_{ast}|$. Attraction of the **Sun**, **Mercury, Venus, the Earth, Mars**, **Jupiter** and **Saturn** is considered.

Launch from 2010 to 2030, maximum time of flight is 30 years

Rank 1: JPL (USA)

The trajectory makes use of a planetary sequence EVEEEJSJA. Only the first phase (Earth Venus) is propelled. The

overall fuel consumption is of roughly 60kg. The team uses a *shape method* based on exponential sinusoids to ensure a global search of the solution space. A local optimisation was then used to refine the trajectory based on a NLP solver that is fed with analytical gradients by *considering the thrust as a sequence of discrete impulses*. The accuracy of this model is high and has been independently verified by forward in time integration.

The complexity of a global optimisation problem is closely related to:The size of the basin of attraction of the global optimum

- The presence of embedded or isolated global minima
- The number of local minima

Rank	Team name	Flyby sequence	Value
1	JPL	EVEEEJSJA	1,850,000
2	Deimos Space	EVVEEVVEVEJSJA	1,820,000
3	GMV	EEVEEJSA	1,455,000
4	MAI & Krunishev	EVEVEEA	1,364,000
5	Politecnico di Torino	EVVJA	1,290,000
6	CNES/CS	EEVEEJSJA	1,194,000
7	Glasgow University	EEVVA	385,000
8	Moscow University	EA	351,152
9	Alcatel	EA	330,385
10	DLR	EA	330,000
11	Tsinghua University	EA	89,000

GTOC 2 – "Multiple Asteroid Randezvous"

A trajectory must be designed for a low-thrust spacecraft which launches from Earth and subsequently performs a rendezvous with one asteroid from each of four defined groups of asteroids (extremely large number of combinations: 41 billions). A stay time of at least 90 days is required. Gravity-assists are not permitted. $J = m_f/t_f$.

Launch from 2015 to 2035, maximum time of flight is 20 years

The criteria for selecting a problem this year are similar to those used in the first competition:

- Global optimisation over a large design space (e.g. large launch window), with many local optima.
- Unusual objective function or constraints no canned methods or existing software can likely fully solve the problem.
- Problem is easy enough to tackle in a 3-4 week timeframe for experienced mission designers or mathematicians, including exploration of new algorithms.
- Problem solutions can be easily verified.

Rank 1: Politecnico di T	orine (Italy)	Rank	Team	
The patched-conic approximation. The			4:	Politecnico di Torino
The patched-conic appr	oximation. The	2	13:	Moscow Aviation Institute, and Khrunichev State F
four asteroids roughly lie on the				Production Space Center
0 /	e on the	3	10:	Advanced Concepts Team, ESA
same plane.			15:	Centre National d'Etudes Spatiales (CNES)
The desire of a monotone increase of		5	1:	GMV Aerospace and Defence
	ie iliciease oi	6	2:	German Aerospace Center (DLR)
500	the spacecraft	7	9:	Politecnico di Milano
Thrust arc	•	8	19:	Alcatel Alenia Space
← ← ← Coast arc	energy	9	14:	Moscow State University
	suggests the	10	7:	Tsinghua University
	Suggests the	11	18:	Carnegie Mellon University, J.J. Arrieta-Camacho
, E	group	_	17:	University of Glasgow, et al.

Ranking	of Returned	Solutions

4:	Politecnico di Torino
3:	Moscow Aviation Institute, and Khrunichev State Research and
	Production Space Center
0:	Advanced Concepts Team, ESA
5:	Centre National d'Etudes Spatiales (CNES)
1:	GMV Aerospace and Defence
2:	German Aerospace Center (DLR)
n .	Politognigo di Milano

10	7:	Tsinghua University
11	18:	Carnegie Mellon University, J.J. Arrieta-Camacho
_	17:	University of Glasgow, et al.
_	21:	Technical University of Delft and Dutch Space
_	23:	Facultes Universitaires Notre-Dame de la Paix (FUNDP)
_	26:	University of Maribor, Bostjan Eferl
Significa	ant positi	on and velocity violations at the asteroids and Earth

^b Significant position and velocity violations at the asteroids and Earth, and flight time limit violation

^c Only one leg computed (Earth to Group 4)

^d Only a proposed method described, no solution computed

J (kg/yr)

98.64

87.93

87.05

85.43

85.28

84.48

82.48

76.37

75.0856.87

27.94

 73.87^{a}

 15.95^{b}

GTOC 3 – "Multiple Sample Return"

An asteroid sample return mission had to be designed to 3 out of 140 asteroids. Earth fly-bys were allowed. The objective function was the ratio between the final spacecraft mass and the total mission time plus a term rewarding longer stay times on $\min(\tau_i)$ the asteroids to increase the science return. m_i

Launch from 2016 to 2025, maximum time of flight is 10 years

Rank 1: CNES (France)

The team used two different local optimisation methods. The first one is a non linear simplex method. It was used to solve the nonlinear programming problem that optimizes

Right ascension, deg

Earth-to-asteroid, asteroid-toasteroid and asteroid-to-Earth biimpulsive (impulses at departure and arrival) transfers with or without intermediate Earth flyby (departure, flyby and arrival dates are determined for minimum ΔV). Simple legs were joined together to build mission scenarios and a global search among the listed asteroids provided the

 $au_{
m max}$

⁷²⁰ 1080 1440 1800 2160 2520 2880 3240 3600 3960 most promising asteroid sequences. An indirect shooting method based Team 4 solution (thick line = thrust arcs, thin line = coast arcs). on Pontryagin's Maximum Principle

was then used to compute the related low-thrust trajectories

while determining the stay-times at each asteroid to maximize J 12th November 2007

)	Rank	Team	Index	Sequence	Departure		
,			J		Arrival, MJD	m_f , kg	$\tau_{\rm min}$, days
)	1	4	0.8700	$\mathbf{E} \mathbf{E} \mathbf{E} 49 \mathbf{E} 37 85 \mathbf{E} \mathbf{E}$	60968	1733	60
e		CNES			64620		
,	2	14	0.8685	$E \to 49 \to 37 85 \to E$	60945	1730	60
		JPL			64597		
	3	2	0.8638	E 49 E 37 85 E E	60996	1721	60
		Georgia Tech			64648		
	4	17	0.8617	E 49 E E 37 85 E E	60964	1717	60
		Deimos			64616		
	5	18	0.8372	E 88 E 96 49 E	57726	1647	245
		TAC			61316		
	6	13	0.8353	E 96 E 88 49 E	58169	1647	211
)		TAS			61799		
	7	8	0.8321	E 88 E 96 E 49 E	58075	1658	60
		MAI			61654		
	8	1	0.8279	E E 96 76 E 49 E	59259	1649	60
		GMV			62870		
	9	5	0.8257	E 96 E 88 49 E	58478	1633	165
		MSU			61998		
	10	7	0.8063^{a}	E 88 19 49 E	58813	1606	62
		Glasgow			62365		
	11	9	0.7946	E 88 76 49 E	58091	1565	225
		Tsinghua			61642		
	12	11	0.7744	E 88 49 19 E	58094	1528	191
		Pisa			61319		
	13	25	0.7537^{b}	E 76 96 49 E	58129	1501	60
		IKI			62332		
	-	21	0.8376^{c}	E 88 E 96 49 E	58169	1663	110
		Milano			61693		
	-	6	0.8172^{c}	E 96 88 49 E	58144	1614	187
		ESA			61650		
	-	10	_d	E 96 122 85 E	59308	1130	94
		Delft			62416		

^a minor constraint violation on Earth's position at departure and rendezvous, deemed to have a negligible influence on the results

^b minor constraint violation on time of flight, deemed to have a negligible influence on the results

^c late solution, due to misunderstanding of problem data

^d major constraint violations

5/20

GTOC 4 – "Asteroids billiard"

A spacecraft has to visit as many Near Earth Asteroids as possible by performing fast consecutive fly-bys to finally randezvous with a NEA. The objective function is the number of asteroid visited. Secondary performance indices, to break ties, are the **final spacecraft mass** and total time of flight.

Launch from 2015 to 2025, maximum time of flight is 10 years, $t_k + 120$ days 1436 asteroids CHOOSING PROMISING < 0.1 a.e. SEQUENCES OF ASTEROIDS SV Sun Adding a level: searching for suitable asteroids. Quantity of branches 100000 Tree; Impulse 10000 Lagrange; bounded Earth 1000 ~ 5000 ~ 25000 ~ 1000 Flight bush. 1000 5 10 15 20 25 30 35 40 45 2nd March 2009 Number of Asteroid

Gravity-assists are not permitted.

Rank 1: Moscow State University (Russia)

Ast. k

Scientists would not agree, before this edition of GTOC, on how many asteroids could be encountered during a low-thrust interplanetary mission. The number 44 (in 10 years) appeared to scientific community as a positive surprise.

of segments

rank	team #	team name	J	$K = m_f$	duration	rendezvous
1	15	Moscow State University	44	[kg] 553.46	[year] 10	asteroid 2000SZ162
2	25	The Aerospace Corporation	44	516.83	10	2000SZ102
3	12	Advanced Concepts Team, ESA	42	511.45	10	200032102 2008UA202
4	20	DEIMOS Space		511.45 605.44	10	20080A202 2006BZ147
		-	39			
5	41	GMV	39	516.30	10	2007YF
6	19	Jet Propulsion Laboratory	38	515.87	10	138911
7	8	Politecnico di Torino, Universita di Roma La Sapienza	36	574.44	10	2006QQ56
8	32	University of Texas at Austin, Odyssey Space Research , ERC Incorporated	32	639.86	9.69	2006UB17
9	34	University of Glasgow University of Strathclyde	29	715.21	9.98	2006QQ56
10	13	Thales Alenia Space	27	533.25	10	2006QQ56
11	10	University of Trento	26	721.73	9.73	2006UB17
12	46	University of Bremen, Politecnico di Milano	26	5 77 .9 7	9.82	2008GM2
13	31	Moscow Aviation Institute, Research Institute of Applied Mechanics and Electrodynamics	24	720.62	10	2007YF
14	2	Georgia Institute of Technology	24	500.27	9.5	2008UA202
15	42	TOMLAB	22	615.22	9.65	2006XP4
16	6	VEGA	20	653.07	10	2008UA202
17	5	DLR German Space Operations Center Aachen University of Applied Sciences	20	635.09	10	2005BG28
18 ^(a)	38	Team Astroshape	20	524.48	10	2006SV5
19	40	DLR Institute of Space Systems	19	592.35	10	138911
20	4	Tsinghua University	18	539.98	10	138911
21	11	University of Missouri	15	836.06	10	2005CD69
22	9	Beijing University of Aeronautics and Astronautics	13	651.87	9.98	2006RJ1
23 ^(a)	35	Texas A&M University	12	697.93	10	2006UB17
_(0)	37	Nanjing University of Aeronautics and Astronautics	54	836.53	9.58	2005SN5
_(b)	23	CHOPIN Team	25	1436.33	10.12	2008UA202
_(c)	18	Chinese Academy of Sciences	19	872.65	9.68	2004XG

^(a) minor constraints violation having negligible influence on the results

(b) major constraints violation, solution not ranked

(c) late solution

GTOC 5 –

"Penetrators"

Some small penetrators are to be delivered to as many asteroids as possible via a close fly-by. The asteroids first have to be visited (randezvous) and a main payload delivered, only then the penetrator can be deployed in a successive fly-by with a velocity not less than ΔV_{min} = 0.4 km/s. The objective function rewards visits and penetrators deployed, as well as extra points for the asteroid Beletskij. Index J equal to the number of spacecraft mission is maximized. An asteroid rendezvous and delivery of the scientific block is estimated by 0.2, and subsequent penetration by 0.8. Secondary performance are the final spacecraft mass and

total time of flight. Launch from 2015 to 2025, maximum time of flight is 15 years, 7075 asteroids

4th October 2010

Rank 1: JPL (USA)

Led by Anastassios Petropoulos, the team Jet from Propulsion (JPL) won Laboratory this edition with a designed trajectory entirely using low-thrust models (i.e. no chemical propulsion model was employed preliminarily)

Rank	Team	Team name	J	T, day
1	29	Jet Propulsion Laboratory (USA)	18	5459.29
2	13	Politecnico di Torino, Universita' di Roma (Italy)	17	5201.58
3	20	Tsinghua University, Beijing (China)	17	5277.86
4	5	ESA-ACT and Global Optimization Laboratory	16	5181.81
5	14	Georgia Institute of Technology (USA)	16	5420.16
6	1	The University of Texas at Austin,		
		Odyssey Space Research, ERC Incorporated (USA)	15	5394.16
7	2	DLR, Institute of Space Systems (Germany)	14	5438.00
8	35	Analytical Mechanics Associates, Inc. (USA)	13	5144.64
9	18	Aerospace Corporation (USA)	12.2	5472.08
10	4	VEGA Deutschland (Germany)	12	4873.99
11	16	University of Strathclyde,		
		University of Glasgow (Scotland)	12	5241.90
12	21	"Mathematical Optimization"		
		at Friedrich-Schiller-University, Jena (Germany)	11	5475.55
13	26	College of Aerospace and Material Engineering,		
		National University Of Defense Technology (China)	8	4819.10
14	33	University of Missouri-Columbia (USA)	1.8	4705.33
15	23	InTrance - DLR / FH Aachen / EADS (Germany)	1.2	1271.0
		Late solution		
	3	University of Trento (Italy)	10	5241.82
	17	College of Aerospace and Material Engineering,		
		National University of Defense Technology (China)	13	5343.31
		Major constraints violation, solution not ranked		
	28	AEVO-UPC (Germany/Spain)	6.4	5290.0
	30	Michigan Technological University,		
		The University of Alabama (USA)	4.2	4215.45
				7

GTOC 6 – "Global mapping of Galilean moons"

The four Galilean moons of Jupiter (Io, Europa, Ganymede and Callisto) have to be mapped globally using repeated multiple fly-bys of a low-thrust spacecraft. Each fly-by pericenter vector defines the visited point on the moon surface that is considered as divided into 32 faces in a similar manner as soccer balls. The objective function rewards the number of different faces visited as well as faces that are more difficult to visit with added bonus for Europa that has a higher scientific interest. Launch from 2020 to 2030, maximum time of flight is 4 years.

Considered as the most difficult of all GTOC problems released so far, the original plan from the organizer was even more ambitious having the spacecraft depart from the Earth rather than from Jupiter sphere of influence. Winners mapped moons consequently.

The second ranked trajectory, found by a team from the European Space Agency, used an entirely different strategy switching moon very frequently rather than mapping a moon at a time, and yet reached a very similar objective value.

It is debated whether the theoretical maximum score of 324 can be reached.

In 2012 shortly after the competition ended, a solution scoring 316/324 was found by the team from the European Space Agency

(and validated by Anastassios Petropoulos from JPL).

Rank 1: Politecnico di Torino & U. di Roma (Italy)

=====				
Rank	J	#Fby	Team	
=====				
1	311	123	Team 5	Politecnico di Torino & U. di Roma "Sapienza" Italy
2	308	141	Team 6	ESA-ACT & Hong Kong Univ. of Science and Technology
3	267	98	Team 2	University of Texas at Austin, USA
4	246	126	Team 4	DLR, Germany
5	240	103	Team 8	State Key Laboratory & Chinese Academy of Sciences
6	178	92	Team 28	Analytical Mechanics Associates, Inc., USA
7	176	84	Team 14/9	Tsinghua University, China
8	163	137	Team 10	The Aerospace Corp., USA
9	154	83	Team 18	University of Colorado, Boulder, USA
10	87	53	Team 3	U. of Jena, Germany & TU Delft, The Netherlands
11	83	23	Team 21	Beihang University, Beijing, China
12	73	17	Team 15	University of Hawaii at Manoa, USA
13	15	3	Team 1	Michigan Technological University, USA

GTOC 7 – "Multi-spacecraft exploration of the asteroid belt"

thrust probes that need to be released at appropriate times and gather science on as many asteroid as possible before returning to the mother spacecraft to deliver their findings. The probes must remain at each reached asteroid for a minimum time of 30 days. Launch from 2021 to 2031, maximum time of flight of a Rank 1: JPL (USA) probe is 6 years, of the mother spacecraft is 12 years. Segment Boundary Control Point (e.g. Planet) Segment Midpoint $\triangle \triangle$ Match Point Impulse (ΔV) N_{ast} $J = \sum \alpha_i$ Central ___ Body X ← Lea →

A mother spacecraft is sent to the main asteroid belt and carries three low-

	Rank	Team No.	Team	\mathbf{J}	J', kg
	1	19	JPL	36	2450.3
	2	22	ACT/ESA-ISAS	35	2502.2
	3	3	Un. Texas	35	2493.0
	4	21	CAS	32	2509.7
9	5	4	Tsinghua Un.	32	2457.0
	6	36	RIAME-MAI	31	2674.5
	7	30	Polimi-Soton-Dinamica	31	2462.9
	8	24	Aerospace C.	30	2442.9
	9	29	NASA Langley-An.Mech.Ass	29	2875.4
	10	6	Colorado Un.	28	2737.1
	11	15	Beihang Un.	27	2537.5
	12	10	Xi'an SCC	27	2532.3
	13	8	CASE-NUDT	27	2529.3
	14	13	Odyssey S.R.	26	2736.9
	15	17	Beijing ACC	26	2539.2
	16	11	Nanjing Un.	25	2897.2
	17	28	NASA Goddard-Un.Illai Sol.	25	2586.0
	18	23	Math. Opt.	24	2818.8
	19	9	Un. Trento	21	2910.0
	20	5	Michigan T. Un.	20	3434.1
	21	2	DLR	19	3261.1
	22	7	Beihang Un.	18	2567.5
	23	12	Telespazio	15	2951.3
	24	14	Un. Roma	13	3586.4
	-	19	Cal. Poly	3^{a}	2450.3
	-	32	Nanjing Un.	- b	-
	-	20	Nanjing Un.	_c	-

^a uncorrect body positions, unacceptable solution

^b probes do not return to mothership (18 asteroids visited), unacceptable solution

^c unreadable solution files, unacceptable solution 9/20

The longest single asteroid sequence valid for a probe and found during the competition had length 14. It is debated if a sequence of length 15 exists. A very competitive solution was found by JPL using an Ant Colony Optimization approach.

20th May 2014

GTOC 8 – "Very-Long-Baseline Interferometry" $J = \sum Ph \left(0.2 + \cos^2 \delta \right)$

The theme chosen for this competition is "high-resolution" mapping of radio sources in the universe using space-based Very-Long-Baseline Interferometry (VLBI)". Three spacecraft depart from the Earth and need to perform interferometric measurements of one of 420 radio sources. A measurement can be made when the three spacecraft lie on a plane whose normal points towards the radio source. Moon gravity assists and low-thrust propulsion can be used to target each interferometric measure. Rank 1: ACT-ISAS (Eupore+Japan)

18th	March	2015

Rank	Team #	Teem Neme	J (km)	Number of
Hallk	10am #	Team Name	5 (KII)	
				Sources
1	14	ACT-ISAS	146332116.9	17
2	3	Tsinghua	128286317.0	22
3	22	PolitoUniromaTAS	111533739.2	18
4	10	StateKeyLab	105402381.0	14
5	24	AMA-LaRC	82012271.5 ^p	13
6	2	CU	76301536.2	16
7	15	DLR	74973406.1	11
8	18	AerospaceCorp	61032221.5 ^p	26
9	13	GlasgowJena+	59682715.4	27
10	8	CAS	49272713.8 ^{p,j}	11
11	29	PolimiUPM	35441068.2 ^v	46
12	6	Nanjing	23129442.8 ^p	16
13	28	Olympio	11913597.4 ^{p,V}	42
14	11	BeijingACC	1927847.8 ^{V,J}	20
15	31	RPI	302220.8	28
16	23	WVU	255469.4 +	21
17	4	Brazil	82056.8 v	15
		Incomplete submis	sions, not ranked	

mcomplete suomissions, not runkeu

CalPolv 683.7

39

10/20

^p Minor corrections to the P weights.

16

allobservations

^v Minor violations of dynamics and constraints.

VModerate violations of dynamics and constraints.

^j Moderate downward revision of J.

^J Significant downward revision of J. Smallest side used instead of smallest altitude.

⁺ J revised upwards — reported h values were too low.

GTOC 9 – "The Kessler Run"

The theme chosen for this competition was active space debris removal and the competition was named "The Kessler Run". It is imagined that in the year 2060 a serious explosion triggered the Kessler effect compromising the Sun-synchronous orbital environment. Fortunately, not all is lost, as scientists isolate a set of 123 orbiting debris pieces that, if removed, would allow to restore the orbital environment functionalities. Multiple missions have to be designed that cumulatively remove all the debris pieces. Each mission cost depends on the spacecraft mass and a base increasing cost.

$$U = \sum_{i=1}^{n} C_{i} = \sum_{i=1}^{n} \left[c_{i} + \alpha \left(m_{0_{i}} - m_{dry} \right)^{2} \right]$$

Rank 1: JPL (USA)

The Acta Futura Special Issue

n. 1	Table 1: Solution Rankings for the Kessler Run (GTOC9)					
Rank	Team Name	Missions	Removed	J in MEUR		
1	Jet Propulsion Laboratory	10	123	731.2756		
2	NUDT Team	12	123	786.21452		
3	XSCC-ADL	12	123	821.37966		
4	Tsinghua-LAD	12	123	829.57987		
5	NPU	13	123	878.99821		
6	Strathclyde++	14	123	918.9808		
7	DLR	14	123	949.85389		
8	Missions Learners	14	123	964.51134		
9	The Aerospace Corporation	14	123	1004.4860		
10	Team Jena	15	123	1022.9063		
11	UT Austin	15	122	1044.1787		
12	NJU Team	16	123	1047.9685		
13	EFLMAN TEAM	14	119	1107.6936		
14	CU Boulder	17	123	1150.8439		
15	CAS-NUAA	14	123	1182.0632		
16	MTU-UoM	16	122	1192.7433		
17	NSSC-THU	16	122	1210.3333		
18	Brute WORHP	18	123	1229.5475		
19	The Goonies	15	122	1238.6396		
20	NablaZeroLabs	16	123	1267.7501		
21	TYSE	16	123	1336.8590		
22	TM	18	123	1490.9659		
23	Occitania	22	120	1493.8567		
24	ARGoPS	20	123	1512.6017		
25	Personal team	23	123	1588.5770		
26	GO to space	20	112	1819.1391		
27	UofI and Goddard	23	123	1951.6797		
28	LSPirates	20	105	2164.2321		
29	Astro-ASAP-UC3M	13	85	3141.1951		
30	Cal Poly SLO	39	84	4467.8746		
31	Team STAR Lab	12	57	4481.7781		
32	Nicolas RAVE	13	18	6453.0254		
33	National University of Colombia	2	7	6511.5471		
34	MeltedCode	1	5	6594.1105		
35	AMSS_GTOC	1	4	6619.3569		
36	Bremen optimizers	1	2	6760.20		
				11/20		

Table 1: Solution Bankings for the Kessler Bun (GTOC9)

1th April 2007

GTOC 10 – "	Sattlars of	the Gala		Name	N
			ллу	1 NUDT&XSCC	3798
To settle the galaxy (100 00	0 Star systems around	the Milky Way):	-	Tsinghua LAD - 2 XINGYI	2806
1) to settle as many stars as				3 ESA-ACT	2652
To settle the galaxy (100 00 1) to settle as many stars as 2) as uniform spatial distribu 3) as little propulsive velocit 4) a bonus for earlier submi	change as possible		Ţ	The Aerospace 4 Corporation	2435
4) a bonus for earlier submi	551011			5 HIT_BACC	2855
Launch from ~now to	Rank 1: NUDT&XSCC			6 CSU	1246
+10 Myr, maximum time	(China)		÷ 7	Sapienza- 7 PoliTo	1013
of flight is 90 Myr				8 worhp2orb	3235
$V = D \left(\begin{array}{c} N \\ N \end{array} \right) \left(\Delta V_{max} \right)$				9 1-2-B-#1	1863
$J = B\left(rac{1}{1+10^{-4}\cdot N\left(E_r+E_{ heta} ight)} ight)\left(rac{Max}{\Delta \mathrm{V}_{used}} ight)$			· _ ·	Team	1352
$J = B\left(rac{N}{1+10^{-4}\cdot N\left(E_r+E_{ heta} ight)} ight)\left(rac{\Delta \mathrm{V}_{max}}{\Delta \mathrm{V}_{used}} ight)$ where $B = \left(1+rac{t_{end}-t_{submission}}{t_{end}-t_{start}} ight)^4$				10 Kataskopoi	
$D = \begin{pmatrix} 1 + \frac{1}{t_{end} - t_{start}} \end{pmatrix}$				11 NASA GRC	1021
$rac{N}{1+10^{-4}\cdot N\left(E_{r}+E_{ heta} ight)}=rac{1}{rac{1}{N}+rac{E_{r}+E_{ heta}}{10^{4}}}$			Sol (starting point)	12 Team Jena	5
$1+10^{-1} \cdot N\left(E_r+E_{\theta}\right) = \frac{1}{N} + \frac{1}{10^4}$				13 NASA LaRC	754
$E_r = \sum_{k=0}^{30} \left(rac{f_r(R_k)}{q_r(R_k)} - 1 ight)^2 E_ heta = \sum_{k=0}^{32} \left(rac{f_ heta(\Theta_k)}{q_ heta(\Theta_k)} - 1 ight)^2$			 Settled star system 	14 NUDT-G301	1347
$\int \sum_{k=0}^{\infty} \langle g_r(R_k) \rangle = \sum_{k=0}^{\infty} \langle g_{\theta}(\Theta_k) \rangle$			 Mother Ships (up to 3), each with up to 3 impulses. 	15 NASA MSFC	2
$30 (f(R_1)) \rangle^2 \qquad 32 (f_0(\Theta_1))$		\mathbf{k}	Can release Settlement Pods at stars. Settlement Pod	16 UMich	3
$E_r = \sum_{k=0}^{30} \left(rac{f_r(R_k)}{g_r(R_k)} - 1 ight)^2$ $E_ heta = \sum_{k=0}^{32} \left(rac{f_ heta(\Theta_k)}{g_ heta(\Theta_k)} - 1 ight)^2$			performs arrival impulse.	17 CU Boulder	5
$f(n) = \frac{1}{N} \sum_{k=0}^{N} f(n, n, n) = \frac{1}{N} f(n, n) = \frac{1}{N} f(n,$			Fast Ships (up to 2),	18 TM	494
$f_r(r) = rac{1}{N}\sum\limits_{i=1}^N f(r;r_i,s_r)$ $f_ heta(heta) = rac{1}{N}\sum\limits_{i=1}^N f(heta; heta_i,s_r)$	^{")} plane statement;		each with two impulses	19 NUAA-ASTL	5
$g_r(r)=lpha(r)rac{2r}{R^2_{max}-R^2_{min}} \qquad g_ heta(heta)=eta(heta)rac{1}{2\pi}$	-		— Settler Ships. Up to 3 can depart from a settled star	20 IRSIBJ	5
$(0.5833, r = 2kpc) \qquad \qquad$	d considering existing		→ Departure and	21 KAIST	2
$\alpha(r) = \begin{cases} 0.4948, r = 32kpc \beta(\theta) = \\ \end{cases} 0.5, \theta = \pi rad$		¥	intermediate impulses	22 Team BIT	758
1, otherwise. $1, otherwise.$	point for tree planning;		> Arrival impulse	23 Team Rocket	1
$R_k = k + 2 kpc,$ $\Theta_k = -\pi + 2\pi \frac{k}{32} rad,$			•	Toso & Herrera	5
$0 \leq k \leq 30$ $0 \leq k \leq 32$	gradient optimization			24	0.60
	of the set of Lambert-	Winners: ant cold	onv-ontimization	MSU-RAS-	968
	like boundary problems		Jily-Optimization	25 RUDN	
15th May 2019	ince boundary problems	42 команлы / 7	3 прелставили нет	гривиальное r	ешен

15th May 2019

42 команды / 73 представили нетривиальное решение 12/20

Best Score

The number of teams

10 editions summary

Champions of Global Trajectory Optimization Competition GTOC

Year Champion 1 2005 Jet Propulsion Laboratory 2 2006 Politecnico di Torino 3 2007 Centre National d'Etudes Spatiales (CNES) 4 2009 Moscow State University 5 2010 Jet Propulsion Laboratory 6 2012 Politecnico di Torino & U. di Roma "Sapienza" 7 2014 Jet Propulsion Laboratory 8 2015 European Space Agency's Advanced Concepts Team & JAXA's ISAS 9 2017 Jet Propulsion Laboratory 10 2019 National University of Defense Technology & Xi'an Satellite Control Center

Methodologies adopted by champions:

Numerical schemes and intuitions based on experience + Nasa Mission Analysis Low-Thrust Optimizer;

Manual selection + Indirect method;

Branch-and-bound algorithm + Direct method;

Numerical search + Indirect method;

Backbones strategy with ant colony optimization, partic algorithms + Local optimizer;

Branch-and-bound algorithm with ant colony optim

Non-liner optimizer Sparse Nonlinear OPTimizer

ESA-ACT team GTOC 10 solution, 3rd place

	,	
cle swarm optimization, ar nization algorithms +	nd e	genetic
	20	CTOC Series
8 0 3 4	15	1st CTOC (2 2nd CTOC (3rd CTOC (2
	- 10	4th CTOC (2 5th CTOC (2
	5	6th CTOC (2 7th CTOC (2
	- 0	8th CTOC (2
3 -2 -1 0 1 2 3		

Nation Publications

GTOC6

Europe & Japan

dario_dot_izzo_at_esa_dot_int

USA

Italy

France

Russia

USA

Italy

USA

USA

China

Inspired by the Global Trajectory Optimization Competition, the China Trajectory Optimization Competition (CTOC) was launched by Chinese Society of Theoretical and Applied Mechanics (CSTAM) in 2009

	20	CTOC Series	Problem Description	Champion Team	
		1st CTOC (2009)	Asteroids sample and return	Academy of Opto-Electronics (AOE), China Academy of Sciences (CAS)	
	15	2nd CTOC (2010)	Mars and asteroid multi-target detection	Tsinghua University (TU)	
	10	3rd CTOC (2011)	Multi-target multi-task detection of planets and small objects (including Qian Xuesen Star)	Technology and Engineering Center for Space Utilization (CSU), CAS	
	10	4th CTOC (2012)	Multi-target multi-mission small object detection	National University of Defense Technology (NUDT)	
		5th CTOC (2013)	Manned asteroid detection	AOE, CAS; CSU, CAS; Xi'an Satellite Control Center (XSCC)	
	- 5	6th CTOC (2014)	A: Asteroids sample and return (multi-gravitational field)	CSU, CAS	
			B: Quickly fly away from the solar system	NUDT; AOE, CAS; CSU, CAS	
		7th CTOC (2015)	A: Irregular asteroid surface parade and detection	National Space Science Center (NSSC), CAS; XSCC; TU	
	- 0		B: Reconstruction of the configuration of near-Earth orbit satellite formation	NSSC, CAS; AOE, CAS; XSCC	
		8th CTOC (2016)	A: Sun synchronous orbit space debris multi-target rendezvous task	Beijing Institute of Technology-Beijing Institute of Electronic Syster Engineering	
2 3	-5		B: Satellite multi-target point observation tasks	Tsinghua Space Center; CSU, CAS 13/20	

Oct 10, 2021 12:00 PM UTC

17.47%

Timeline

Official GTOC11 website:

https://gtoc11.nudt.edu.cn

Nov 07, 2021 12:00 PM UTC

Teams

Discussion

The Problem

Leaderboard

Announcements

Teams' Solutions

GTOC 11 – "Dyson Sphere" Building

Warm up your rocket (science) ...

12 September: Registration opens
9 October: Registration closes
10 October: Problem release
17 October: Solution submissions opens
7 November: Solution submissions closes

18 December: GTOC11 virtual meeting (tentative plan)

A special issue of the Journal Acta Astronautica is also being organized and will allow

the publication of outstanding methods and solutions produced. 10th October 2021

Постановка задачи

The task is to design the "Dyson Ring" orbit, to place 12 stations in it, and to carry out a series of missions to transfer asteroids to these stations to maximize the transferred asteroids mass and minimize fuel costs for these missions.

Illustration of the construction of the "Dyson ring".

Постановка задачи

≤ 10 Motherships> 83000 asteroidsTheir dynamic model:

 $\begin{cases} \dot{\boldsymbol{r}} = \boldsymbol{v} \\ \dot{\boldsymbol{v}} = -\frac{\mu}{r^3} \boldsymbol{r} \end{cases}$

The maneuvers of the Motherships are impulsive with \mathcal{V}_{∞} between 0 and 6 km/s.

The launches of the Motherships are between 01.01.2121 00:00:00 UT and 01.01.2141 00:00:00 UT

The asteroid flyby is successive, if the relative velocity ≤ 2 km/s. Then the Mothership sets the ATD on the asteroid.

 \leq 4 impulsive velocity changes is allowed for Mothership between two successive asteroid flybys.

The ATD can be activated at a proper time to transfer the asteroid to one of 12 building station.

The maneuvers of the asteroids (provided by the ATD) are modeled as continuous-thrust maneuvers with a fixed magnitude of acceleration 1e-4 m/s2. Then the mass of the asteroid decreases:

$$\dot{m} = \alpha \cdot m_0^{ast}$$
 where $\alpha = 1e-9 \text{ s}^{-1}$
 $m^{ast}(\Delta t) = m_0^{ast} - \dot{m} \cdot \Delta t$

Оптимизируемый функционал

$$J = B \cdot \frac{10^{-10} \cdot M_{\min}}{a_{Dyson}^2 \sum_{k=1}^{10} \left(1 + \Delta V_k^{Total} / 50\right)^2}$$

where $B = 2 - \sqrt{1 - \left(1 - \frac{t_{submission} - t_{start}}{t_{end} - t_{start}}\right)^3}$ is the bonus for earlier submission,

 $a_{\rm Dyson}$ is the radius of Dyson sphere,

$$\begin{split} \Delta V_k^{\text{Total}} & \text{ is the sum of all } \Delta V \text{ used by } k^{\text{th}} \text{ Mothership,} \\ M_{\min} &= \min \left\{ M_j \mid j = 1, 2, ..., 12 \right\}, \\ \text{where} & M_j = \sum_{i=1}^{n_j} m_{ij}^{ast} \quad j = 1, 2, ..., 12, \\ & \text{where} \quad n_j \quad \text{is the number of the asteroids at the } j^{\text{th}} \text{ station} \\ & m_{ij}^{ast} \quad \text{is the remaining mass of the } i^{\text{th}} \text{ asteroid at the } j^{\text{th}} \text{ station} \end{split}$$

TsinghuaLAD&509 won the competition and reached 1.1 Astronomical Units with 388 asteroids

GTOC 11 best result

Результаты 11-х соревнований

1) Name: TsinghuaLAD&509 Affiliation: Tsinghua University, School of Aerospace Engineering; Shanghai Institute of Satellite Engineering Location: Beijing, China; Shanghai, China Members: Zhong Zhang, Nan Zhang, Xiang Guo, Di Wu, Xuan Xie, Jinyuan Li, Jia Yang, Shiyu Chen, Fanghua Jiang, Hexi Baoyin; Haiyang Li, Huixin Zheng, Xiaowen Duan

2) Name: ACT&Friends Affiliation: ESA Advanced Concepts Team; Friends Location: NL; JP Members: Dario Izzo, Marcus Märtens, Anne Mergy, Emmanuel Blazquez, Moritz van Looz, Pablo Gomez, Giacomo Acciarini; Chit Hong Yam, Javier Hernando Ayuso, Yuri Shimane

3) Name: theAntipodes Affiliation: University of Auckland - ISAE-SUPAERO - University of Surrey - University of Southampton Location: Auckland and Europe

Members: Roberto Armellin, Laura Pirovano, Minduli Wijayatunga, Adam Evans (University of Auckland); Alberto Fossa, Andrea Bellome, Thomas Caleb (ISAE-SUPAERO); Xiaoyu Fu Danny Owen (University of Surrey); Laurent Beauregard (ESOC); Alex Wittig, Cristina Parigini (University of Southampton); Joan-Pau Sanchez Cuartielles (ISAE-SUPAERO)

• Суперкомпьютер

Соревнования завершились 7 ноября, в тот же день, когда была опубликована задача 1-х соревнований GTOC в 2005. В тех первых соревнованиях команда из Университета Tsinghua, School of Aerospace Engineering, которая выиграла 11-е соревнования, участвовала и заняла последнее место.

		Sub miss		Best
	Name	ions	Mmin, N	Score
1	TsinghuaLA	11	1.81364e+15,	8443.6
	D&509		388	30600
2	ACT&Friend	5	2.0125e+15,	6359.7
	s	2	301	24900
3	theAntipode	44	1.27672e+15,	5992 .2
	s		293	98400
4	UT Austin	5	1.13283e+15,	5885.4
			235	69300
5	ASRL	34	1.10046e+15,	5525.3
			209	88800
6	The	12	1.89224e+15,	5487.5
	Eccentric		346	43400
7	HIT	21	1.08546e+15,	5208.3
			250	46300
8	GHWZZ	1	1.50229e+15,	4794.4
			294	68600
9	ASTL-NUAA	7	1.03068e+15,	3735.1
			213	60200
10	Team_BIT&	6	8.00267e+14,	3532.7
	ITNS		199	04400
11	Pursuance	6	7.20367e+14,	3277.9
	Team		157	96400
12	DLR	16	9.00578e+14,	3249.3
13			133	73900
15	IDRL &	5	9.67251e+14, 160	3223.9
14	ECNS BUAA ADML	3	1.02691e+15,	01300
	ab	3	1.02691e+15, 185	73500
15	BUAA	2	9.31363e+14,	2622.1
	DOAN	-	174	22400
16	TeamJena	2	5.9348e+14,	2376.2
			138	59800
17	AU-LU	3	5.49777e+14,	1556.5
			148	91200
18	The	1	4.07086e+14,	694 .95
	Aerospace		71	7730
19	ACSER	2	8.82037e+13,	250.94
			12	9330
20	Iowa State	5	1.07086e+14,	150.87
	University		51	2700
21	ALICE	1	1.0712e+14,	135 .02
			12	1510
22	Space	1	6.07828e+12,	55.398
23	Buffaloes		12	206
23	ASFC-BUAA	1	2.83589e+13, 12	13.962
			12	322

GTOC-11

Благодарю за внимание!

GTOC 10 best result