Новые методы решения задач идентификации и адаптивного управления

А.И. Глущенко, К.А. Ласточкин

Институт проблем управления им. В.А. Трапезникова РАН

Лаборатория 7 "Адаптивных и робастных систем им. Я.З. Цыпкина"

aiglush@ipu.ru

20 марта, 2025

Основные направления исследований в 2021-2025 г.:

- онлайн идентификация параметров линейных и нелинейных динамических систем,
- идентификационное адаптивное управление линейными и нелинейными системами с гарантией экспоненциальной устойчивости,
- адаптивное восстановление физических состояний линейных динамических систем (кандидатская диссертация К.А. Ласточкина),
- решение прикладных задач управления различными динамическими объектами: необитаемый подводный аппарат, квадрокоптер, катер.

Исследования проводились, в том числе, при поддержке Гранта Президента РФ для государственной поддержки молодых российских ученых МД-1787.2022.4.

Онлайн идентификация параметров линейных и нелинейных систем

Идентификация за рубежом, в СССР/РФ и ИПУ РАН

CCCP/PΦ ¹	ИПУ РАН ²	
Е.Г. Клейман, Н.Н. Карабутов,	А.А. Фельдбаум, Н.С. Райбман, Я.З. Цыпкин,	
Ю.И. Неймарк, М.М. Коган, А.Л. Фрадков	Б.Т. Поляк, В.А. Лотоцкий, И.И. Перельман,	
В.Н. Фомин, О.Н. Граничин, А.А. Бобцов	Н.Н. Бахтадзе, А.М. Шубладзе, А.В. Назин,	
Д.В. Ефимов, С.В. Арановский, В.Я. Рота	ч А.С. Позняк, А.Г. Александров, И.Б. Ядыкин,	
и др.	и др.	
3A P	УБЕЖОМ ³	
P. Eykhoff, L. Ljung	, K.J. Astrom, K. Narendra,	
T. Soderstrom, P. Stoica, R. Ortega, R. Lozano		
G. Kreisselmeier, G.C. Goodwin, D. Bernstein,		
S. Kaczmarz и др.		

¹Е.Г. Клейман, И.А. Мочалов Идентификация нестационарных объектов // АиТ. 1994. №2. С.3–22

Н.Н. Карабутов Идентификация неопределенных систем. І. Адаптивные пропорциональноинтегральные алгоритмы с неопределенностью //АиТ. 1997. №.11. С. 118-130.

²И.В. Прангишвили, В.А. Лотоцкий, К.С. Гинсберг, В.В. Смолянинов Идентификация систем и задачи управления: на пути к современным системным методологиям // Проблемы управления. 2004. №. 4, С.2-15.

Теория управления (дополнительные главы): Учебное пособие / Под ред. Д. А. Новикова. М.: ЛЕНАНД, 2019. 552 с.

Н.С. Райбман Идентификация объектов управления (обзор) // АиТ. 1979. №.6. С. 80–93.

 $^{3}\text{L}.$ Ljung Perspectives on system identification // Annual Reviews in Control. 2010. Vol. 34. No. 1. P. 1-12.

Ortega R., Nikiforov V., Gerasimov D. On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes //Annual Reviews in Control. 2020. Vol. 50. P. 278-293.

Оффлайн и онлайн идентификация неизвестных параметров

1) Оффлайн идентификация — определение параметров системы по массиву заранее измеренных точек (*N* измерениям входа и выхода системы). Обычно проводится по данным, полученным в ходе заранее спланированного эксперимента (подача тестовых воздействий).

2) Онлайн идентификация – определение параметров системы по точкам, поступающим в систему идентификации в текущий момент времени и в темпе работы системы. Обычно проводится по данным, получаемым в нормальном режиме функционирования системы (без подачи тестовых воздействий).

Отсутствие тестовых воздействий усложняет задачу идентификации и требует разработки новых алгоритмов идентификации.

Развитие методов онлайн идентификации

- В рамках развития методов онлайн идентификации решены задачи:
- 1) идентификации постоянных параметров при:
 - отсутствии возмущений и
 - a) выполнении необходимых и достаточных условий идентифицируемости⁴,
 - b) невыполнении необходимых и достаточных условий идентифицируемости⁵,
 - ii) наличии внешних возмущений⁶,
- 2) идентификации кусочно-постоянных параметров⁷.
- 3) идентификации переменных параметров⁸.

⁴Глущенко А.И., Петров В.А., Ласточкин К.А. I-DREM: ослабление условия квадратичной интегрируемости // АиТ. 2021. № 7. С. 147-165.

⁵Глущенко А.И., Ласточкин К.А. Ослабление условия реализуемости процедуры динамического расширения и смешивания // АиТ. 2023. №.1. С. 23-62.

⁶Glushchenko A., Lastochkin K. Instrumental Variables Based DREM for Online Asymptotic Identification of Perturbed Linear Systems // IEEE Transactions on Automatic Control. 2025. Vol. 70, No. 2. P. 1320-1327.

⁷Glushchenko A., Lastochkin K. Unknown piecewise constant parameters identification with exponential rate of convergence // International Journal of Adaptive Control and Signal Processing. 2023. V. 37. No. 1. P. 315-346

⁸Glushchenko A., Lastochkin K. Robust Time-Varying Parameters Estimation Based on I-DREM Procedure // IFAC-PapersOnLine. Casablanca: Elsiever, 2022. Vol. 55. No. 12. P. 91-96.

Постановка задачи

Рассмотрим нелинейную динамическую систему общего вида:

$$\dot{x}(t) = f(x, u, \theta), x(t_0) = x_0, y(t) = h(x, u),$$
(1)

где:

 $\dot{X}(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, y(t) \in \mathbb{R}^{p}, \theta \in \mathbb{R}^{n_{\theta}}, f \colon \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{n_{\theta}} \mapsto \mathbb{R}^{n}, h \colon \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{p}.$

Допущение 1 (параметризуемость)

Система (1) параметризуема в следующем виде:

$$z(t) = \varphi^{\top}(t)\theta, \qquad (2)$$

где $z\left(t
ight)\in\mathbb{R}$, и $arphi\left(t
ight)\in\mathbb{R}^{n_{ heta}}$ должны быть вычисляемы по $y\left(t
ight)$ и $u\left(t
ight).$

Допущение 2 (идентифицируемость)

$$arphi\left(t
ight)\in\mathrm{FE}:=\left\{arphi\left(t
ight)\in\mathbb{R}^{n}:\exists t_{e}>t_{r}^{+}\geq t_{0}\geq0,\;lpha>0,\;\int\limits_{t_{r}^{+}}^{t_{e}}arphi\left(au
ight)arphi^{ op}\left(au
ight)arphi olpha
ight\}.$$

Требуется, имея информацию только о значениях $z(\tau)$, $\varphi(\tau)$, $t_0 \leq \tau \leq t$, обеспечить существование предела

$$\lim_{t \to \infty} \left\| \tilde{\theta}(t) \right\| = \lim_{t \to \infty} \left\| \hat{\theta}(t) - \theta \right\| = 0,$$
(3)

где $\hat{ heta}\left(t
ight)\in\mathbb{R}^{n_{ heta}}$ – динамическая оценка неизвестных параметров heta.

7 / 39

К уравнению (2) применим следующую фильтрацию:

$$\dot{\Phi}(t) = e^{-\sigma(t-t_0)}\varphi(t)\varphi^{\top}(t), \Phi(t_0) = \mathbf{0}_{n_{\theta} \times n_{\theta}}, \dot{Y}(t) = e^{-\sigma(t-t_0)}\varphi(t)z(t), Y(t_0) = \mathbf{0}_{n_{\theta} \times 1}.$$

$$(4)$$

В результате имеем уравнение с матричным регрессором:

$$Y(t) = \Phi(t)\theta.$$
(5)

Умножив (5) на $\operatorname{adj} \{ \Phi(t) \}$, получаем уравнение со скалярным регрессором:

$$\mathcal{Y}(t) = \Delta(t)\,\theta,\tag{6}$$

где $\Delta(t) = \det \{ \Phi(t) \}$ и $\mathcal{Y}(t) = \operatorname{adj} \{ \Phi(t) \} Y(t).$

По уравнению (б) с помощью метода градиентного спуска введем алгоритм идентификации:

$$\dot{\hat{\theta}}(t) = -\gamma \Delta(t) \left(\Delta(t) \hat{\theta}(t) - \mathcal{Y}(t) \right), \hat{\theta}(t_0) = \hat{\theta}_0,$$
(7)

где $\gamma > 0$.

Теорема 1

Если $\varphi(t) \in \text{FE}$ (допущение 2), то ошибка $\tilde{\theta}(t)$ для всех $t \ge t_0$ экспоненциально и поэлементно монотонно сходится к нулю.

Рассмотрим динамическую систему второго порядка:

$$\begin{aligned} \dot{x}_1(t) &= x_2(t), \, x_1(t_0) = 0, \\ \dot{x}_2(t) &= \theta_1 x_1(t) + \theta_2 x_2(t) + \theta_3 u(t), \, x_2(t_0) = 0, \\ y(t) &= x_1(t). \end{aligned}$$

Представим второе уравнение в операторной форме:

$$s^{2}y(t) = \begin{bmatrix} y(t) & sy(t) & u(t) \end{bmatrix} \theta,$$

$$\frac{\lambda_{0}s^{2}}{s^{2}+\lambda_{1}s+\lambda_{0}}y(t) = \begin{bmatrix} \frac{\lambda_{0}}{s^{2}+\lambda_{1}s+\lambda_{0}} \begin{bmatrix} y(t) \end{bmatrix} & \frac{\lambda_{0}s}{s^{2}+\lambda_{1}s+\lambda_{0}} \begin{bmatrix} y(t) \end{bmatrix} & \frac{\lambda_{0}}{s^{2}+\lambda_{1}s+\lambda_{0}} \begin{bmatrix} u(t) \end{bmatrix} \end{bmatrix} \theta.$$

В результате имеем параметризацию:

$$z(t) = \varphi^{\top}(t)\theta,$$

где

$$z(t) = \frac{\lambda_{0}s^{2}}{s^{2}+\lambda_{1}s+\lambda_{0}} [y(t)],$$

$$\varphi^{\top}(t) = \begin{bmatrix} \frac{\lambda_{0}}{s^{2}+\lambda_{1}s+\lambda_{0}} [y(t)] & \frac{\lambda_{0}s}{s^{2}+\lambda_{1}s+\lambda_{0}} [y(t)] & \frac{\lambda_{0}}{s^{2}+\lambda_{1}s+\lambda_{0}} [u(t)] \end{bmatrix}.$$

На основе полученного уравнения введем закон идентификации:

$$\begin{split} \dot{\hat{\theta}}(t) &= -\gamma \Delta(t) \left(\Delta(t) \, \hat{\theta}(t) - \mathcal{Y}(t) \right), \\ \mathcal{Y}(t) &:= \operatorname{adj} \left\{ \Phi(t) \right\} Y(t), \Delta(t) := \operatorname{det} \left\{ \Phi(t) \right\}, \\ \dot{\Phi}(t) &= e^{-\sigma(t-t_0)} \varphi(t) \, \varphi^\top(t), \Phi(t_0) = \mathbf{0}_{3 \times 3}, \\ \dot{Y}(t) &= e^{-\sigma(t-t_0)} \varphi(t) \, z(t), \, Y(t_0) = \mathbf{0}_{3 \times 1}. \end{split}$$

Моделирование

Параметры системы и алгоритма идентификации установим следующим образом:

$$\theta_1 = -0.23, \ \theta_2 = -0.45, \ \theta_3 = 0.2, \ u(t) = 1, \ \sigma = 0.1, \ \gamma = 100, \lambda_0 = 1, \ \lambda_1 = 2.$$

Рис. 1: Переходные процессы по y(t), u(t) и $\hat{\theta}(t)$.

Основной вывод для практиков: без тестовых сигналов и в нормальном режиме функционирования системы предложенный алгоритм идентификации позволяет находить значения неизвестных постоянных параметров системы.

Развитие методов онлайн идентификации

- В рамках развития методов онлайн идентификации решены задачи:
- 1) идентификации постоянных параметров при:
 - і) отсутствии возмущений и
 - a) выполнении необходимых и достаточных условий идентифицируемости⁹,
 - b) невыполнении необходимых и достаточных условий идентифицируемости¹⁰,
 - іі) наличии внешних возмущений¹¹,
- 2) идентификации кусочно-постоянных параметров¹².
- 3) идентификации переменных параметров¹³.

⁹Глущенко А.И., Петров В.А., Ласточкин К.А. I-DREM: ослабление условия квадратичной интегрируемости // АиТ. 2021. № 7. С. 147-165.

¹⁰Глущенко А.И., Ласточкин К.А. Ослабление условия реализуемости процедуры динамического расширения и смешивания // АиТ. 2023. №1.1. С. 23-62.

¹¹Glushchenko A., Lastochkin K. Instrumental Variables Based DREM for Online Asymptotic Identification of Perturbed Linear Systems // IEEE Transactions on Automatic Control. 2025. Vol. 70, No. 2. P. 1320-1327.

¹²Glushchenko A., Lastochkin K. Unknown piecewise constant parameters identification with exponential rate of convergence // International Journal of Adaptive Control and Signal Processing. 2023. V. 37. No. 1. P. 315-346

¹³Glushchenko A., Lastochkin K. Robust Time-Varying Parameters Estimation Based on I-DREM Procedure // IFAC-PapersOnLine. Casablanca: Elsiever, 2022. Vol. 55. No. 12. P. 91-96.

Развитие методов онлайн идентификации параметров линейных и нелинейных динамических систем при действии возмущений

- Glushchenko A., Lastochkin K. Unbiased Parameter Estimation via DREM with Annihilators // arXiv:2403.11076. 2024. Р.1-7. Подана на конференцию ALCOS 2025, Mexico.
- 2) Glushchenko A., Lastochkin K. Overview of Online Exact Estimators for LRE with Perturbation // Подана на конференцию ALCOS 2025, Mexico.

Решение задач идентификации для нефакторизуемых нелинейных систем: Нефакторизуемые системы – это системы, для которых нельзя получить

$$z(t) = \varphi^{\top}(t)\theta,$$

но можно получить параметризацию вида

$$z(t) = \mathcal{H}(\varphi, \theta)$$

где $\mathcal{H}: \mathbb{R}^{n_{\theta}} \times \mathbb{R}^{n_{\theta}} \mapsto \mathbb{R}$ – известная функция.

Идентификационное адаптивное управление с гарантией экспоненциальной устойчивости

Адаптивное управление за рубежом, в СССР/РФ и ИПУ РАН

CCCP/PΦ ¹	14	ИПУ РАН ¹	5
А.А. Красовский, В.А. Якубович,		Б.Н. Петров, А.А. Фельдбаум, Я.З. Цыпкин,	
В.Н. Фомин, А.Л. Фрадков, А.М. Цыкунов,		В.Ю. Рутковский, С.Д. Земляков, В.М. Глумов,	
Б. Р. Андриевский, В.О. Никифоров,		И.Н. Крутова, Б.В. Павлов, И.Б. Ядыкин,	
Д.В. Ефимов, А.А. Бобцов, А. А. Пыркин,		А.Г. Александров, И.И. Перельман,	
И.Б. Фуртат, П.В. Пакш	ин, М.М. Коган и	А.М. Шубладзе, В.Н. Аф	анасьев и др.
др.			
	ЗА РУБЕЖОМ		
K	K. Narendra, A. Annaswamy, P. Ioannou,		
G	G. Tao, M. Krstic, F. Lewis, J.J. Slotine,		
S.	S.S. Ge., R. Ortega, M. Polycarpou,		
A	A. S. Morse, S. Sastry, R. Marino, P. Tomei, и		
	др.		

¹⁴Fradkov A., Polyak B. T. Adaptive and robust control in the USSR //IFAC-PapersOnLine. 2020. Vol. 53. No. 2. P. 1373-1378.

Annaswamy A. M., Fradkov A. L. A historical perspective of adaptive control and learning //Annual Reviews in Control. 2021. Vol. 52. P. 18-41.

¹⁵Рутковский В. Ю. Работы института проблем управления в области беспоисковых адаптивных систем и систем управления космическими аппаратами //АиТ. 1999. № 6. С. 42-49.

Земляков С. Д., Рутковский В. Ю. О некоторых результатах развития теории и практического применения беспоисковых адаптивных систем //АиТ. 2001. №. 7. С. 103-121.

Перельман И. И. Анализ современных методов адаптивного управления с позиций приложения к автоматизации технологических процессов //АиТ. 1991. №. 7. С. 3-32.

Классическое и идентификационное адаптивное управление

1) Классическое адаптивное управление (1950-е – н.в.) – стабилизация невязки между состояниями системы и их желаемыми значениями достигается за счет специального изменения (настройки) параметров обратной связи. Параметры обратной связи не обязаны сходится к постоянным "идеальным значениям",

2) Идентификационное адаптивное управление (2010-е – н.в.) – стабилизация невязки между состояниями системы и их желаемыми значениями достигается за счет онлайн идентификации идеальных значений параметров закона управления. Сходимость достигается при выполнении необходимых и достаточных условий идентифицируемости.

Идентификационное адаптивное управление позволяет гарантировать экспоненциальную устойчивость замкнутой системы управления (при выполнении необходимых и достаточных условий параметрической идентифицируемости).

Развитие идентификационного адаптивного управления

В рамках развития методов идентификационного адаптивного управления были решены задачи адаптивного управления с гарантией экспоненциальной сходимости

1) классом линейных стационарных динамических систем при:

- а) выполнении условий согласования¹⁶,
 b) нарушении условий согласования¹⁷.

2) классом линейных систем с кусочно-постоянными параметрами¹⁸,

3) классом линейных систем с переменными параметрами при:

- а) известной динамической модели изменения неизвестных параметров¹⁹,
 b) неизвестной динамической модели изменения неизвестных параметров²⁰.

Получено обобщение некоторых результатов на нелинейные системы²¹.

¹⁷Glushchenko A., Lastochkin K. Exponentially Convergent Direct Adaptive Pole Placement Control of Plants With Unmatched Uncertainty Under FE Condition // IEEE Control Systems Letters. 2022. Vol. 6. P 2527-2532

¹⁸Глущенко А., Ласточкин К. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть II. Объекты с кусочно-постоянными параметрами // АиТ. 2023. №3. С. 65-105.

¹⁹Глущенко А. И.. Ласточкин К. А. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть III. Объекты с переменными параметрами // АиТ. 2023. №. 11. С. 147-168.

²⁰Глущенко А., Ласточкин К. Аппроксимационный подход к адаптивному управлению линейными нестационарными системами // АиТ. 2024. № 5. С.86-111.

²¹Ласточкин К. А. Идентификационный подход к адаптивному управлению по состоянию нелинейными системами // ВСПУ. М.: ИПУ РАН, 2024. С. 404-408.

¹⁶ Глушенко А., Петров В., Ласточкин К. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть I. Объекты с постоянными параметрами // АиТ. 2022. № 4. С. 62-99.

Постановка задачи идентификационного адаптивного управления

Рассматривается класс линейных стационарных систем:

$$\dot{x}(t) = Ax(t) + Bu(t) = \Theta_{AB}^{\top}\phi(t), x(t_0) = x_0, \qquad (1)$$

где $x(t) \in \mathbb{R}^{n}$, $u(t) \in \mathbb{R}^{m}$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ и $\phi(t) = \begin{bmatrix} x^{\top}(t) & u^{\top}(t) \end{bmatrix}^{\top} \in \mathbb{R}^{n+m}$, $\Theta_{AB}^{\top} = \begin{bmatrix} A & B \end{bmatrix} \in \mathbb{R}^{n \times (n+m)}$. Для системы (1) задается эталонная модель:

$$\dot{x}_{ref}(t) = A_{ref} x_{ref}(t) + B_{ref} r(t), \qquad (2)$$

где $x_{ref}\left(t
ight)\in\mathbb{R}^{n},\,r\left(t
ight)\in\mathbb{R}^{m},\,A_{ref}\in\mathbb{R}^{n imes n},\,B_{ref}\in\mathbb{R}^{n imes m}.$

Допущение 1 (Условия согласованности Эрцбергера)

~

$$A + BK_x = A_{ref}, \qquad BK_r = B_{ref}.$$

Допущение 2 (Необходимое и достаточное условие идентифицируемости)

$$\phi(t) \in \mathrm{FE} := \left\{ \phi(t) \in \mathbb{R}^n : \exists t_e > t_r^+ \ge t_0 \ge 0, \ \alpha > 0, \ \int\limits_{t_r^+}^{t_e} \phi(\tau) \phi^\top(\tau) \, d\tau \ge \alpha I_n \right\}.$$

Цель:

где $e_{ref}(t)$

$$\lim_{\substack{t \to \infty \\ t \to \infty}} \|\mathcal{K}_{x}(t)\| = 0 \quad (\exp) \\ \lim_{t \to \infty} \|\tilde{\mathcal{K}}_{r}(t)\| = 0 \quad (\exp) \end{cases} \right\} \Rightarrow \lim_{t \to \infty} \|e_{ref}(t)\| = 0 \quad (\exp) ,$$

$$= x(t) - x_{ref}(t), \quad \tilde{\mathcal{K}}_{x}(t) = \hat{\mathcal{K}}_{x}(t) - \mathcal{K}_{x}, \quad \tilde{\mathcal{K}}_{r}(t) = \hat{\mathcal{K}}_{r}(t) - \mathcal{K}_{r}.$$

$$= x(t) - x_{ref}(t), \quad \tilde{\mathcal{K}}_{x}(t) = \hat{\mathcal{K}}_{x}(t) - \mathcal{K}_{x}, \quad \tilde{\mathcal{K}}_{r}(t) = \hat{\mathcal{K}}_{r}(t) - \mathcal{K}_{r}.$$

Основной результат. Параметризация.

Первый шаг: $\begin{aligned} z(t) &= \varphi^{\top}(t) \Theta_{AB}, \\ z^{\top}(t) &= x(t) - lx_f(t), \\ \dot{x}_f(t) &= -lx(t) + x(t), x_f(t_0) = 0_n, \\ \dot{\varphi}(t) &= -l\varphi(t) + \phi(t), \varphi(t_0) = 0_{n+m}. \end{aligned}$ Второй шаг: $\begin{aligned} \mathcal{Y}(t) &= \mathrm{adj} \left\{ \Phi(t) \right\} Y(t), \ \Delta(t) &= \mathrm{det} \left\{ \Phi(t) \right\}, \\ \dot{\Phi}(t) &= e^{-\sigma(t-t_0)}\varphi(t) \varphi^{\top}(t), \ \Phi(t_0) &= 0_{(n+m)\times(n+m)}, \\ \dot{Y}(t) &= e^{-\sigma(t-t_0)}\varphi(t) z(t), Y(t_0) = 0_{(n+m)\times1}. \end{aligned}$

Утверждение 1

I. Неизвестные параметры $\theta = \begin{bmatrix} K_x & K_r \end{bmatrix}^\top$ удовлетворяют уравнению:

 $\mathcal{Y}_{ heta}\left(t
ight)=\mathcal{M}_{ heta}\left(t
ight) heta,$

где

$$egin{aligned} \mathcal{Y}_{ heta}\left(t
ight) &= \mathrm{adj}\left\{\mathcal{Y}_{B}^{ op}\left(t
ight)\mathcal{Y}_{B}\left(t
ight)
ight\}\left[\Delta\mathcal{A}_{ref}-\mathcal{Y}_{A}\left(t
ight) \ \Delta\left(t
ight)B_{ref}
ight]^{ op}, \ \mathcal{M}_{ heta}\left(t
ight) &= \mathrm{det}\left\{\mathcal{Y}_{B}^{ op}\left(t
ight)\mathcal{Y}_{B}\left(t
ight)
ight\}, \ \mathcal{Y}_{A}\left(t
ight) &= \mathcal{L}_{A}\mathcal{Y}\left(t
ight), \quad \mathcal{Y}_{B}\left(t
ight) &= \mathcal{L}_{B}\mathcal{Y}\left(t
ight) \end{aligned}$$

и $I > 0, \sigma > 0, \mathcal{L}_A \begin{bmatrix} A & B \end{bmatrix}^\top = A, \mathcal{L}_B \begin{bmatrix} A & B \end{bmatrix}^\top = B.$ II. Если $\phi(t) \in FE$, то $\mathcal{M}_{\theta}(t) \ge \underline{\mathcal{M}}_{\theta} > 0$ для всех $t \ge t_e$.

18 / 39

(3)

Основной результат. Закон настройки.

На основании уравнения (3) введем адаптивный закон управления:

$$u(t) = \hat{K}_{x}(t) \times (t) + \hat{K}_{r}(t) r(t) = \omega^{\top}(t) \hat{\theta}(t), \hat{\theta}(t) = -\gamma(t) \mathcal{M}_{\theta}(t) \left(\mathcal{M}_{\theta}(t) \hat{\theta}(t) - \mathcal{Y}_{\theta}(t) \right) = -\gamma(t) \mathcal{M}_{\theta}^{2}(t) \tilde{\theta}(t),$$

$$(4)$$

где $\omega\left(t
ight)=\begin{bmatrix}x^{ op}\left(t
ight) & r^{ op}\left(t
ight)\end{bmatrix}^{ op}.$

Теорема 1.

Пусть $\phi\left(t
ight)\in\mathrm{FE}$, тогда, если $\gamma\left(t
ight)$ выбран согласно

$$\gamma\left(t
ight) \stackrel{\Delta}{=} \left\{ egin{array}{l} 0,$$
 если $\mathcal{M}_{ heta}\left(t
ight) = 0, \ rac{\gamma_{\mathbf{0}}\lambda_{\max}\left(\omega(t)\omega^{ op}(t)
ight) + \gamma_{\mathbf{1}}}{\mathcal{M}_{ heta}^{2}(t)} \end{array}$ иначе,

тогда адаптивный закон управления (4) обеспечивает следующие свойства:

1) $\forall t_a \geq t_b \quad \left| \tilde{ heta}_i(t_a) \right| \leq \left| \tilde{ heta}_i(t_b) \right|;$

2)
$$\forall t \geq t_0 \quad \xi(t) = \begin{bmatrix} e_{ref}^{\top}(t) & vec^{\top}\left(\tilde{\theta}(t)\right) \end{bmatrix}^{\top} \in L_{\infty};$$

3) $\forall t \ge t_e$ ошибка $\xi(t)$ экспоненциально сходится к нулю со скоростью, минимальное значение которой прямо пропорционально $\gamma_0 \ge 1$ и $\gamma_1 \ge 0$.

Рассмотрим модель поперечного движения малого пассажирского самолета:

$$\dot{x} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0.049 & -0.083 & 0 & -1 \\ 0 & -4.55 & -1.70 & 0.172 \\ 0 & 3.382 & -0.065 & -0.089 \end{pmatrix} x + \begin{pmatrix} 0 & 0 \\ 0 & 0.012 \\ 27.276 & 0.576 \\ 0.395 & -1.362 \end{pmatrix} u,$$

$$x_0 = \begin{pmatrix} -1 & -0.5 & 0 & 0 \end{pmatrix}^{\top}.$$

где x_1 – угол крена, x_2 – угол скольжения, x_3 – скорость изменения крена, x_4 – скорость изменения курса, u_1 – положение элерона, u_2 – положение руля направления.

Эталонная модель была выбрана в виде:

$$\dot{x}_{ref} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0.048 & -0.082 & 0 & -0.976 \\ -19.53 & -5.219 & -10.849 & 1.822 \\ -0.204 & 3.22 & -0.145 & -2.961 \end{pmatrix} x_{ref} + \begin{pmatrix} 0 & 0 & 0.029 \\ 0 & 0.029 \\ 19.441 & 5.317 \\ 0.348 & -3.379 \end{pmatrix} r,$$

$$r_1 = 1, \quad r_2 = 0.5 (1 - e^{-10t}).$$

Параметры закона настройки, фильтров и начальные условия для настраиваемых параметров закона управления:

$$I = 1, \quad k = 10, \quad \gamma_1 = 10, \quad \gamma_0 = 1, \quad \sigma = \frac{1}{2}, \\ \hat{\theta}^{\top}(0) = \begin{bmatrix} 0_{m \times n} & I_{m \times m} \end{bmatrix}.$$

Моделирование

Рис. 2: Переходные процессы x и x_{ref} ; эталонный u^* и полученный u сигналы управления за

Моделирование

22 / 39

Развитие идентификационного адаптивного управления

В рамках развития методов идентификационного адаптивного управления были решены задачи адаптивного управления с гарантией экспоненциальной сходимости

1) классом линейных стационарных динамических систем при:

- а) выполнении условий согласования²²,
 b) нарушении условий согласования²³.

2) классом линейных систем с кусочно-постоянными параметрами²⁴,

3) классом линейных систем с переменными параметрами при:

а) известной динамической модели изменения неизвестных параметров²⁵,
 b) неизвестной динамической модели изменения неизвестных параметров²⁶.

Получено обобщение некоторых результатов на нелинейные системы²⁷.

²³Glushchenko A., Lastochkin K. Exponentially Convergent Direct Adaptive Pole Placement Control of Plants With Unmatched Uncertainty Under FE Condition // IEEE Control Systems Letters. 2022. Vol. 6. P 2527-2532

²⁴Глущенко А., Ласточкин К. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть II. Объекты с кусочно-постоянными параметрами // АиТ. 2023. №3. С. 65-105.

²⁵Глущенко А. И., Ласточкин К. А. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть III. Объекты с переменными параметрами // АиТ. 2023. №. 11. С. 147-168.

²⁶Глущенко А., Ласточкин К. Аппроксимационный подход к адаптивному управлению линейными нестационарными системами // АиТ. 2024. № 5. С.86-111.

²⁷Ласточкин К. А. Идентификационный подход к адаптивному управлению по состоянию нелинейными системами // ВСПУ. М.: ИПУ РАН, 2024. С. 404-408.

²²Глушенко А., Петров В., Ласточкин К. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть I. Объекты с постоянными параметрами // АиТ. 2022. № 4. С. 62-99.

Распространение полученных результатов на другие постановки задач адаптивного управления и наблюдения

- 1) Glushchenko A., Lastochkin K. Composite Adaptive Disturbance Rejection in Robotics via Instrumental Variables based DREM // Подана в Automatica.
- 2) Glushchenko A., Lastochkin K. Adaptive Observer with High-Gain Disturbance Estimator for Linear Systems with Overparameterization // Подана в International Journal of Control.

Робастное управление ориентацией необитаемого подводного аппарата и квадрокоптера

В ИПУ разработаны необитаемый подводный аппарат собственной конструкции и квадрокоптер на отечественном микроконтроллере. В этой связи возникла задача построения систем автоматического управления а) ориентацией и b) пространственными координатами данных систем. Были организованы конкурсы систем автоматического управления, в которых требовалось не просто принять участие, но попытаться одержать победу.

Рис. 5: Водяной

Рис. 4: Квадрокоптер

Место системы управления ориентацией в общей структуре системы автоматического управления НПА/БПЛА

Постановка задачи управления ориентацией НПА/БПЛА

Ориентация НПА/БПЛА как твердого тела описывается следующими уравнениями:

$$\begin{split} \begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} &= J \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \\ \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} &= \begin{bmatrix} \frac{\tau_{\psi}}{J_{x}} \\ \frac{\tau_{\theta}}{J_{y}} \\ \frac{\tau_{\phi}}{J_{z}} \end{bmatrix} + \begin{bmatrix} qr \frac{J_{y} - J_{z}}{J_{x}} \\ pr \frac{J_{z} - J_{x}}{J_{y}} \\ pq \frac{J_{z} - J_{y}}{J_{z}} \end{bmatrix} + \Delta_{g}, \end{split}$$
(1)

где

 $\psi, \ \theta, \ \phi$ – углы Эйлера,

p, q, r – угловые скорости в неинерциальной системе отсчета,

 $au_{\psi}, au_{ heta}, au_{\phi}$ – управляющие моменты,

 Δ_g – вектор моментов внешних сил (внешние возмущения),

 $J_x, \ J_y, \ J_z$ – моменты инерции вдоль каждой оси неинерциальной системы отсчета.

Цель управления ориентацией: обеспечить выполнение предельных неравенств

$$\lim_{t \to \infty} |\psi(t) - \psi_{\text{ref}}(t)| \le \varepsilon_{\psi}, \lim_{t \to \infty} |\theta(t) - \theta_{\text{ref}}(t)| \le \varepsilon_{\theta}, \lim_{t \to \infty} |\phi(t) - \phi_{\text{ref}}(t)| \le \varepsilon_{\phi}, \quad (2)$$

где $\psi_{ref}(t)$, $\theta_{ref}(t)$, $\phi_{ref}(t)$ – желаемые значения углов Эйлера, ϵ_{ψ} , ϵ_{θ} , $\epsilon_{\phi} > 0$ – достаточно малые числа, определяющие предельную ошибку слежения.

Декомпозиция системы и выбор управления

После преобразований системы (1), каждый из углов Эйлера может быть описан следующей системой уравнений:

$$\dot{x}(t) = Ax(t) + B_0 b(u(t) + \Lambda(t)),$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix},$$
(3)

где

 $x_1(t)$ – конкретный угол Эйлера (ψ , θ или ϕ),

 $x_2(t)$ – угловая скорость по конкретному углу Эйлера (ψ , θ или ϕ),

u(t) – сигнал управления (τ_{ψ} для ψ , τ_{θ} для θ и τ_{ϕ} для ϕ),

b – номинальное значение величин $\frac{1}{J_x}$ для ψ , $\frac{1}{J_y}$ для θ и $\frac{1}{J_z}$ для ϕ ,

 $\Lambda(t)$ – неопределенность, вызванная внешними возмущениями, перекрестными связями между углами и параметрической неопределенностью.

Желаемое качество управления каждым углом Эйлера определим моделью:

$$\dot{x}_{ref}(t) = A_{ref} x_{ref}(t) + B_{ref} r(t), \qquad (4)$$

где $A_{ref} = A + B_0 b k_x$ – гурвицева , $B_{ref} = B_0 b k_r$, $k_x = \begin{bmatrix} k_{1x} & k_{2x} \end{bmatrix}$, $k_r = -k_{1x}$. Сравнение (3) и (4) мотивирует следующий выбор закона управления:

$$u(t) = k_{x}x(t) + k_{r}r(t) - \hat{\Lambda}(t), \qquad (5)$$

где $\hat{\Lambda}(t)$ – оценка неопределенности, r(t) – задающее воздействие по углу Эйлера.

Теорема 1.

Пусть существуют $c_1 > 0, c_2 > 0$ такие, что для всех $t \ge t_0$ выполняется следующее неравенство:

$$\dot{\Lambda}(t)\Big|\leq c_{1}\left\|x\left(t
ight)
ight\|+c_{2}.$$

Тогда существует $l_0 > 0$ такое, что для всех $l \ge l_0 > 0$ закон управления (5) с наблюдателем неопределенности:

$$\begin{split} \hat{\Lambda}(t) &= \begin{bmatrix} 0 & b^{-1} \end{bmatrix} (\chi(t) + A_{ref} x_f(t)) + k_r r_f(t) - \hat{\Lambda}_f(t), \\ \chi(t) &= l(x_f(t) - x(t)), \\ \dot{x}_f(t) &= -l(x_f(t) - x(t)), x_f(t_0) = x(t_0), \\ \dot{r}_f(t) &= -l(r_f(t) - r(t)), r_f(t_0) = r(t_0), \\ \dot{\hat{\Lambda}}_f(t) &= -l(\hat{\Lambda}(t) - \hat{\Lambda}_f(t)), \hat{\Lambda}_f(t_0) = \hat{\Lambda}(t_0) \end{split}$$

обеспечивает:

$$\lim_{t \to \infty} \|x(t) - x_{ref}(t)\| = \varepsilon_{\text{UB}}(I) \text{ (exp)}, \lim_{I \to \infty} \|\varepsilon_{\text{UB}}(I)\| = 0.$$

Для экспериментов был выбран дистанционно управляемый подводный аппарат «Водяной», сконструированный лабораторией 17 (масса: 8,4 кг, объем: 8,7 дм³, размер: 50 см × 50 см × 25 см). Эксперименты проводились в бассейне.

- Задача состояла в том, чтобы следить за ступенчатым задающим сигналом для углов Эйлера с амплитудой 0,3 рад и синусоидальным сигналом с амплитудой 0,6 рад и частотой 0,03 рад/с. Базовые ПИД-регуляторы для углов Эйлера и положения были настроены опытным путем.
- Параметры предложенной системы управления:

$$k_{1x} = -4, k_{2x} = -2, k_r = 4, I = 15, b = 10.$$

Рис. 6: Переходные процессы по ψ , полученные при использовании предложенной системы управления и ПИД-регулятора для ступенчатого задания

Рис. 7: Переходные процессы по ψ , полученные при использовании предложенной системы управления и ПИД-регулятора для синусоидального задания

Рис. 8: Переходные процессы по θ , полученные при использовании предложенной системы управления и ПИД-регулятора для ступенчатого задания

Рис. 9: Переходные процессы по θ , полученные при использовании предложенной системы управления и ПИД-регулятора для синусоидального задания

Рис. 10: Переходные процессы по ϕ , полученные при использовании предложенной системы управления и ПИД-регулятора для ступенчатого задания

Рис. 11: Переходные процессы по ϕ , полученные при использовании предложенной системы управления и ПИД-регулятора для синусоидального задания

Для экспериментов был выбран БПЛА, подготовленный лабораторией 80 (масса: 1,47 кг, размер: 35 см × 35 см × 10 см). Эксперименты проводились на робототехническом полигоне.

- Эдадача состояла в том, чтобы следить за ступенчатым задающим сигналом для углов Эйлера 0 градусов → 10 градусов → -10 градусов → 0 градусов. Сравнение велось с двумя решениями на базе ПИД-регуляторов и решения от лаборатории 37 на основе наблюдателя неопределенности.
- Параметры предложенной системы управления:

$$k_{1x} = -10, \ k_{2x} = -1.5, \ k_r = 10, \ l = 8, \ b = 60.$$

Рис. 12: Переходные процессы по крену ψ

Результаты экспериментов

Рис. 13: Переходные процессы по тангажу θ

- Была разработана система управления ориентацией НПА/БПЛА, которая, в отличие от многих известных решений, имеет всего четыре гиперпараметра для каждого элемента вектора состояния объекта.
- Было доказано, что ошибка слежения экспоненциально сходится к компакту (шару), радиус которого можно регулировать выбором одного из вышеупомянутых гиперпараметров.
- Проведенные эксперименты показали преимущества предложенной системы управления по сравнению с известными решениями.

Спасибо за внимание !