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Abstract— The estimation of heavy-tailed probability
density function is an important tool for the description of
the Web-traffic data and the solution of applied problems
such as classification. The paper is devoted to the non-
parametric estimation of a heavy-tailed probability density
function by a variable bandwidth kernel estimator. Two
approaches are used: (1) a preliminary transformation of
the data to provide more accurate estimation of the density
at the tail domain; (2) the discrepancy method based on the
Kolmogorov-Smirnov statistic to evaluate the bandwidth
of the kernel estimator. It is proved that the discrepancy
method may provide the fastest achievable order of the
mean squared error. An application to Web data analysis
is presented.

Index Terms— Heavy-tailed distribution, discrepancy
method, tail index, Web-traffic.

I. I NTRODUCTION

Measurements of Web-traffic shows that some WWW-
traffic characteristics like file sizes, sizes and dura-
tions of sub-sessions are independent and heavy-tailed
distributed. The latter implies that the “outliers” (or
measurements those differ strongly from the main part
of observations) play in these data a significant role and
cannot be extracted from consideration.
In this paper, the non-parametric estimation of heavy-
tailed densities by empirical sampleXn ={X1,. . . ,Xn}
of independent identically distributed (i.i.d.) random
variables with the density functionf(x), is considered.
The problem is that a histogram cannot be directly
applied to heavy-tailed densities since it is defined on the
bounded interval. It provides an absolutely misleading
estimation of the density at the “tail” domain.
The kernel estimator

f̂h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (1)

whereK is a kernel function fromR to R (as a rule,
K(x) is some probability density, e.g., a normal one),

h is a smoothing parameter or a bandwidth (it has
approximately the same meaning as a bin width of the
histogram estimate), is defined on the whole real axes.
However, it may provide sharp peaks at “outliers” or
over-smoothes the density due to the constant bandwidth.
The good fitting of heavy-tailed densities requires dif-
ferent amount of smoothing in different locations of the
distribution. Roughly speaking, a tail domain of a heavy-
tailed density containing sparse observations requires a
flat estimate therewith the body of the density requires
a sharper estimate. That is why, a variable bandwidth
kernel estimator

f̂A(x|h) =
1

nh

n∑

i=1

f(Xi)1/2K
(
(x−Xi)f(Xi)1/2/h

)

(2)
approximates such densities better [1]. Sincef(Xi) is
unknown, the following estimator

f̃A(x|h1, h) =
1

nh

n∑

i=1

f̂h1(Xi)1/2 (3)

·K
(

x−Xi

h
f̂h1(Xi)1/2

)

is used in practice. Usually, the non-variable bandwidth
kernel estimator (1) is used as a pilot estimatorf̂h(x).
The variable bandwidth kernel estimator is not reliable
for the estimation of the density outside the range of
the sample at least for compactly supported kernels like
Epanechnikov’s kernelK(x) = 3/4(1− x2)1I(| x |≤ 1).
In order to estimate the density outside the range of
the sample better and particularly to apply the estima-
tors defined on bounded intervals (e.g., a histogram) to
heavy-tailed densities, the preliminary transformation of
the data may be useful. The survey of transformations is
given in Section II.
Another question is how to evaluate the bandwidthh
in (2) and (3). The theory shows that iff has four
bounded derivatives, the kernel is non-negative and sym-
metric (e.g. Epanechnikov’s kernel) and ifh is chosen
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asymptotic to any constant multiple ofn−1/9, wheren is
the sample size, then the mean squared error (MSE =

IE
(
f̂A(x|h)− f(x)

)2
) of (2) has the fastest achievable

rate n−8/9 [2]. Indeed, theMSE reflects the accuracy
of the estimation at the main part of the density better
but not at the tail where values are small.
For the practice the data-dependent selection methods
of h (e.g., the cross-validation, the discrepancy method)
work better. Apart of computational problems caused
by the search of maximum of the maximum likeli-
hood functional, the cross-validation method has slow
convergence rates and high sampling variability [3]. A
weighted version of the cross-validation was proposed
in [4] for estimator (3). However, it was not proved that
this method provides the optimal ordern−1/9 of h and
consequently the fastest raten−8/9 of MSE.
In Section III the discrepancy method is presented. It is
proved, that it may provide the variable bandwidth kernel
estimator (3) withMSE ∼ n−8/9 using the samples of
moderate sizes.
Further, we focus on estimate (3). We shall combine the
advantages of transformations of the data and the dis-
crepancy method to improve the behavior of the estimate
outside of the sample and provide theMSE ∼ n−8/9.
Let us explain why non-parametric density estimates
with good behavior at the tail domain are required. Apart
of the visual data analysis and the estimation of moments
of the distribution, this feature is very significant if densi-
ties of many populations are compared. Such comparison
is required in the classification (pattern recognition). If
one uses an empirical Bayesian classification algorithm,
then observations will be classified by the comparison of
the corresponding density estimates of each class. Since
the object can arise in the tail domain as well as in the
body, a tail estimator with good properties is principal for
the classification. Application of classification techniques
to Web data analysis is given in [5].
In Section IV variable bandwidth kernel estimator (3)
with the discrepancy method as a smoothing tool
are applied to WWW-traffic characteristics. Preliminary
adapted transformation (7) of the data described in
Section II is used.

II. T RANSFORMATION APPROACH

Estimators with data transformations are the alterna-
tive to variable bandwidth kernel estimators. The back-
ground of the transformation idea is the necessity of the
different smoothing at different locations of a heavy-
tailed density. Then back-transformed density estimates
with fixed smoothing parameters work like location-
adaptive estimates.

Let T (x) be a monotone increasing continuously dif-
ferentiable ”one-to-one” transformation function (the
derivative of the inverse functionT−1 is assumed to
be continuous). We apply it to our dataX1, ..., Xn and
obtain the new sampleY1, . . . , Yn (Yi = T (Xi)). The
distribution function ofYi is given by

G(x) = IP{Yi < x} = IP{T (Xi) < x} (4)

= IP{Xi < T−1(x)} = F (T−1(x)),

its density reads

g0(x) = G
′
(x) = f(T−1(x))(T−1(x))

′
.

The densityg0(x) of the r.v. Yi is estimated by some
estimatorĝ0(x) and after the re-transformation we get
the density estimate of theXi by the formula:

f̂(x) = ĝ0(T (x))T
′
(x). (5)

One may take variable bandwidth kernel estimator (3) or
standard kernel estimator (1) aŝg0(x).
The selection ofT (x) is a principal problem. By (4)
a transformationT (x) is completely determined by the
distribution functionsG(x) and F (x). One can select
any ”target”G(x), but F (x) is unknown.
In [6] transformationsT : R+ → [0, 1] were proposed.
It was proved that for kernel estimates with compact
kernels the transformation to an isosceles triangular
densityφtri(x) on [0, 1] and for a histogram the transfor-
mation to a uniform densityφuni(x) provide the optimal
convergence rate in the metric of spaceL1. Since such
T (x) and, therefore, the distribution ofYj = T (Xj)
depend on the unknown distribution functionF , it is
impossible to obtain an absolute identity ofg0 andφtri

(or φuni(x) ). Hence, it is proposed in [6] to use instead
of F some parametric models. However, the concrete
models were not indicated and their influence on the
decay rate at infinity of the re-transformed estimates was
not discussed.
In [7], [8] the families of fixed transformationsTλ(x)
(independent onF (x)) given by

Tλ(x) =
{

xλsign(λ), if λ 6= 0,
lnx, if λ = 0

are considered. Here,λ is the parameter minimizing the
functional

∫
R(g

′′
(y))2dy, g(x) is unknown density of the

transformed r.v.Y1 = Tλ(X1) that requires a preliminary
estimation. Since the function

∫
R(g

′′
(y))2dy shows the

curvature of the density then such transformations are
applied for better restoration of curvy but not necessary
heavy-tailed densities. In [9] the fixed transformation
T (x) = (2/π) arctanx, that provided a good accuracy
for some heavy-tailed densities is considered. However,
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without the assumptions about the type of the distri-
bution any transformation may lead to a density that
is difficult to estimate by a limited sample and hence,
one cannot provide an accurate estimation of the tails.
In order to improve the estimation at the tails in [5] a
transformationTγ̂(x) : R+ → [0, 1], which is adapted
to the data (via the estimatêγ of some parameterγ
called the tail index1) is proposed. To constructTγ̂(x)
the distribution function of the triangular distribution
Φ+tri(x) = (2x − x2)1I{x ∈ [0, 1]} + 1I{x > 1} with
the densityφ+tri(x) = 2(1 − x)1I{x ∈ [0, 1]} is taken
as the ”target” distribution functionG(x) and the Pareto
distribution function

Ψγ̂(x) =
{

1− (1 + γ̂x)−1/γ̂ , if x ≥ 0,
0, if x < 0.

(6)

is taken as the ”fitted” distribution functionF (x). Then
the transform fromΨγ̂(x) to Φ+tri(x) is defined by the
formulae

Tγ̂(x) = (Φ+tri)−1(Ψγ̂(x)) = 1−
√

1−Ψγ̂(x) (7)

= 1− (1 + γ̂x)−1/(2γ̂).

The Pareto choice is widespread and motivated by a
theorem, [10] which states that, for a certain class of
distributions and for a sufficiently high thresholdu of
the r.v. X, the conditional distribution of the overshoot
Y = X − u, provided thatX exceedsu, converges to a
Generalized Pareto distribution. The triangular ”target”
distribution function is selected in such a way to get the
continuous density of the transformed r.v.Y1 = Tγ̂(X1),
when the estimatêγ deviates fromγ. The choice of a
uniform distribution function as the ”target” distribution
function leads to a discontinuity of the density ofY1 at
1 and, hence, to the problem in the density estimation.
As a quality measure of the re-transformed kernel es-
timate of f(x) one may consider the mean integrated
squared error (MISE at the intervalΩ)

MISEh(γ̂, Ω) = IE
∫

Ω
(f̂(x)− f(x))2dx

= IE
∫

Ω
(ĝh(Tγ̂(x))− g(Tγ̂(x)))2T ′γ̂(x)dTγ̂(x)

= IE
∫

Ω∗
(ĝh(y)− g(y))2T ′γ̂(T−1

γ̂ (y))dy,

whereΩ∗ = Tγ̂(Ω) andg(x) is the density, which is ac-
tually estimated instead ofg0(x) = f(T−1

γ (x))(T−1
γ (x))′

(sinceγ̂ 6= γ),

g(x) = f(T−1
γ̂ (x))(T−1

γ̂ (x))′.

1The tail index defines the shape of the tail.

ĝh(x) is some estimate ofg(x) with the smoothing
parameterh.
Since for transformation (7) we haveT ′γ̂(T−1

γ̂ (x)) =
0.5 (1− x)1+2γ̂ at Ω∗ = [0, 1], i.e.,0 < T ′γ̂(T−1

γ̂ (x)) ≤ c
holds atΩ∗ then we get

MISEh(Ω) ≤ c

∫

Ω∗
IE(ĝh(y)− g(y))2dy. (8)

It means, that the order of theMISE of re-transformed
estimates atΩ is at least not worse than the order of the
MSE of ĝh(y).

III. D ISCREPANCY METHOD

The idea of the discrepancy method is to selecth as
a solution of the discrepancy equation

ρ(F̂ , Fn) = δ.

Here, F̂ (x) =
∫ x
−∞ f̂(t)dt, f̂(t) is some estimate of the

density,δ is a known uncertainty of the estimation of the
distribution functionF (x) by the empirical distribution
function Fn(t), i.e. δ = ρ(F, Fn), ρ(·, ·) is a metric
in the space of distribution functions. The discrepancy
method was proposed and investigated in [11], [12] for
the smoothing of nonparametric density estimates. Since
δ is usually unknown, in these papers some quantiles of
the limit distribution of the Mises-Smirnov statistic and
Kolmogorov-Smirnov statistic2

√
nDn =

√
n sup
−∞<x<∞

|F (x)− Fn(x)|

were used asδ. For Kolmogorov-Smirnov statistic one
can take the valueδ = 0.5 corresponding to the mode
of the distribution of the latter statistic [11]. Leth∗ be
a solution of the equation

sup
−∞<x<∞

|Fn(x)− FA
h,h1

(x)| = δn−1/2, (9)

whereFA
h,h1

(x) =
∫ x
−∞ f̃A(t | h1, h)dt.

Further, we assume that the estimate (1) is taken asf̂h1

in (3).
Theorem 1:Let Xn = {X1, . . . , Xn} be i.i.d. r.v.s

with a density f(x). Let the non-random bandwidth
h1 = cn−1/5 in f̂h1(x). We assume thatK(x), x ∈ R is
continuous, positive and satisfies

sup
x

K(x) < ∞,

∫

R
K(x)dx = 1.

Then any solutionh∗ = h∗(n) of equation (9) obeys the
condition

h∗ → 0, as n →∞.

2The distributions of these statistics do not depend onF (x).
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Theorem 2:Let the densityf(x) be estimated by vari-
able bandwidth kernel estimatẽfA(x|h1, h) (3). Assume
the conditions onf(x) and K(x) given in Theorem
1. In addition, we assume thatK(x) has the order
m + 1,3 f(x) hasm − 1 continuous derivatives and its
mth derivative is bounded in the neighborhood of0:
0 < η1 ≤ |f (m)(x)| ≤ η2, η1 and η2 are constants.
Let the non-random bandwidthh1 in f̂h1 obeys the
conditions:h1 → 0, nh1 → ∞ as n → ∞. Then any
solutionh∗ = h∗(n) of equation (9) obeys the condition

IP{h > ρn−1/(α(m+1))} < exp
(
−2n1−2/α

)
, (10)

whereρ = (2(1 + δ)/G)1/(m+1) is a constant,
G = η1/(m + 1)!

∫∞
−∞ ym+1K(y)dy, for any α > 2.

Remark 1:Pareto distribution (6) gives an example of
the distribution that satisfies the condition of Theorem 2.
Let < be a compact set ofR. Given ε > 0, we use the
following notation of [13]

<ε ≡ {x ∈ R : for some y ∈ <, ‖x− y‖ ≤ ε},
where‖ · ‖ is the usual Euclidean norm.

Theorem 3:Let the densityf(x) be estimated by vari-
able bandwidth kernel estimatẽfA(x|h1, h) (3). Assume
the conditions onf(x) andK(x) given in Theorem 2 and
m = 3. In addition, we assume thatf(x) and 1/f(x)
have four continuous derivatives andf(x) is bounded
away from zero, on<ε. Besides, we assume thatK(x) is
symmetric. Let us assume, that a non-random bandwidth
h1 in (3) obeysh1 = c∗n−1/5, wherec∗ is some constant.
Then for any solutionh∗ of (9) we have

IP{IEf̃A(x|h1, h∗)− f(x) > ψ(x)n−4/9}
< 2 exp

(
−2n1/9

)
,

where ψ(x) = (K3/24) (d/dx)4 (1/f(x))ρ4, ρ is de-
fined in Theorem 2.

Corollary 1: Assume the conditions of Theorem 3.
Let us assume, that IE(Z · f̂A(x|h)) = 0, whereZ is
a standard normal r.v. Then,MSE(f̃A(x|h1, h∗)) may
reach the ordern−8/9 if a maximal solution of (9)h∗
has the ordern−1/9.

Remark 2:Since the function of the r.v.X1 (that is
one term in the sum̂fA(x|h)) and the normal distributed
r.v. Z are independent, the condition IE(Z · f̂A(x|h)) = 0
is not rigorous.

3A kernel has the orderp if the conditionsZ
K(x)dx = 1,

Z
xiK(x)dx = 0, i = 1, ..., p− 1;Z

xpK(x)dx = Kp−1 6= 0

hold.

IV. A PPLICATION TO WEB-TRAFFIC

CHARACTERISTICS

Fig. 1. The density estimation by standard kernel estimator (1)
and variable bandwidth estimator (3) with the smoothing by the
discrepancy method (9) for the data sets s.s.s., d.s.s..

We apply estimators (1) and (3), whereh is estimated
by discrepancy method (9) to the real Web-data. These
data gathered in the Ethernet segment of the Department
of Computer Science at the University of Würzburg were
analyzed in papers [5], [9], [14]. The data describe the
characteristics of sub-sessions, i.e., the size of a sub-
session (s.s.s) in bytes and the duration of a sub-session
(d.s.s.) in seconds, as well as the characteristics of the
transferred Web-pages, i.e., the size of the response (s.r.)
in bytes and the inter-response time (i.r.t.) in seconds.
The description of all these r.v.s is presented in Table I.
To simplify the calculation the data were scaled, i.e. all
values were divided by the scaling parameters (see Table
I).
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Fig. 2. The density estimation by standard kernel estimator (1)
and variable bandwidth estimator (3) with the smoothing by the
discrepancy method (9) for the data sets s.r., i.r.t..

In order to check whether the measurements corre-
sponded to samples s.s.s., s.r., d.s.s. and i.r.t. are derived
from heavy-tailed distributions, we estimated the tail
index γ by the popular Hill’s method

γ(k, n) =
1
k

k∑

i=1

ln X(n−i+1) − lnX(n−k),

where X(1) ≤ . . . ≤ X(n) are order statistics of the
sampleXn.
In Table II one can see the estimatesγ(k, n) and the
values of the number of retained datak, for all data
sets that are taken from [14]. Observing the estimates
of γ one may conclude that the estimates of the tail
index α = 1/γ are always less than2 for all considered
data sets. It follows from the extreme value theory [15],

TABLE I

DESCRIPTION OF THE DATA

s.s.s.(B) d.s.s.(sec) s.r.(B) i.r.t.(sec)
Sample 373 373 7107 7107
Size
Mini 128 2 0 6.543 · 10−3

mum
Maxi 5.884 · 107 9.058 · 104 2.052 · 107 5.676 · 104

mum
Mean 1.283 · 106 1.728 · 103 5.395 · 104 80.908
StDev 4.079 · 106 5.206 · 103 4.931 · 105 728.266
s 107 103 106 103

TABLE II

ESTIMATION OF THE TAIL INDEX AND THE BANDWIDTHS FOR

WEB-TRAFFIC CHARACTERISTICS

r.v. γ̂ k h1 hs hv 1.01− Tγ̂(X(n))
s.s.s. 0.949 50 0.059 0.155 0.320 0.382
s.r. 0.898 211 0.020 0.059 0.175 0.75
i.r.t. 0.712 211 0.042 0.110 0.250 0.519
d.s.s. 0.601 50 0.170 1.000 1.100 0.063

that at leastβth moments,β ≥ 2 of the distribution of
s.s.s., d.s.s., s.r., i.r.t. are not finite. The distributions of
considered Web-traffic characteristics are heavy-tailed.
Hence, we may transform the data by transformation (7).
The densityg0(x) of the new r.v. has been estimated
by (1) and (3) with Epanechnikov’s kernel. The re-
transformed estimate of the unknown densityf(x) was
calculated by (5):

f̂(x) = 0.5ĝ0(1− (1 + γ̂x)−1/(2γ̂))(1 + γ̂x)−1/(2γ̂)−1.

Bandwidthshs andhv in Table II have been selected by
the discrepancy method (9) withδ = 0.5 and correspond
to estimates (1) and (3), respectively. The valueh1 of the
non-variable kernel estimatêfh1(x) in (3) is calculated
by the formula

ĥOS =
(

243K2

35µ2(K)2n

)1/5

· s,

where s is the sample standard derivation,µ2(K) =∫
z2K(z)dz (the over-smoothing bandwidth selection

[17]). For Epanechnikov’s kernelK2 = 3/5, µ2 = 1/5.
This formula provides the minimal upper bound of the
theoretical value ofh that corresponds to the optimal
MSE ∼ n−4/5 of estimate (1).
The re-transformed kernel estimates (1) and (3) have
been calculated for samples d.s.s. and s.s.s., s.r. and i.r.t.
(Figs. 1, 2). The estimatef(x) = g(x/s)/s is shown,
whereg(x/s) is the re-transformed estimate constructed
by scaled data. A logarithmic scale both for theX and
Y axes is used.
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The curves of re-transformed kernel estimate (1) corre-
sponding to all sets apart of d.s.s. and of re-transformed
kernel estimate (3) for the sample s.r. are truncated
for large values ofx/s because the kernel is not wide
enough. Such boundary effects are typical for kernel
estimates that are used for finite densities. In this case,
the kernel estimate of the densityg0(x) located on[0, 1]
may equal to 0 at the neighborhood of1 beyond the
maximal observation of the sample. It reflects on the re-
transformed estimate. It becomes equal to 0 at the tail
and logarithms of these values go to−∞. In [5] it was
shown that the choiceh = 1.01−Tγ̂(X(n)), whereTγ̂(x)
is transformation (7),X(n) is the maximal observation in
the sample, may improve the boundary problems. One
can compare the values ofhs, hv and1.01 − Tγ̂(X(n))
in Table II. Obviously, the discrepancy method selects
larger valuesh that are closer to1.01 − Tγ̂(X(n)), for
estimate (3) rather than for estimate (1). Hence, the re-
transformed estimate (3) provides better estimation of the
density at the tail domain for Web-traffic characteristics.

APPENDIX I
PROOF OFTHEOREM 1.

Proof: Suppose, thath∗ 6→ 0 as n → ∞. It
implies, that for any integerN > 0 ∃n > N such
as h∗ = h∗(n) > H∗, where H∗ is some positive
constant. We shall prove, that for suchh∗ it holds
sup−∞<x<∞ |Fn(x)− FA

h∗,h1
(x)| 6→ 0 asn →∞.

For any solutionh∗ one may represent the divergence in
(9) using the replacementu = (t−Xi) f̂h1(Xi)1/2/h∗

Fn(x)− FA
h∗,h1

(x) (11)

=
1
n

n∑

i=1

(θ (x−Xi)

− f̂h1(Xi)1/2

h∗

∫ x

−∞
K

(
t−Xi

h∗
f̂

1/2
h1

(Xi)
)

dt)

=
1
n

n∑

i=1

(
θ (x−Xi)−

∫ ti

−∞
K(u)du

)
,

where we denoteti = ti(h∗) = (x−Xi) f̂h1(Xi)1/2/h∗,

θ (x) =
{

1, x ≥ 0,
0, x < 0.

We denote

ϕ (h∗, Xi, x) =
∫ ti

−∞
K(u)du,

Φ(h∗, n, x) =
n∑

i=1

(
θ (x−Xi)−

∫ ti

−∞
K(u)du

)
.

First, we assume thath∗ = h∗(n) is a constant.
Assume for simplicity, that a sample contains only one
r.v. X1. Since for anyi

0 <

∫ ti

−∞
K(u)du < 1

holds, then

−1 < θ (x−X1)−
∫ t1

−∞
K(u)du < 1 ∀x.

Hence,

sup
−∞<x<∞

|Fn(x)− FA
h∗,h1

(x)|

= sup
x
|θ (x−X1)−

∫ t1

−∞
K(u)du| = ξ,

0 < ξ < 1. The same conclusion may be obtain when a
sample has more than one r.v.
Let us assume thath∗ is not a constant. Without loss of
generality, one can consider the sequence

h∗1 ≤ h∗2 ≤ ... ≤ h∗j ≤ ...,

where h∗j = h∗(nj) = H∗ + j∆, ∆ is some positive
constant, andN < n1 ≤ n2 ≤ ... ≤ nj ≤ ....
We get

ϕ (h∗1, Xi, x)− ϕ
(
h∗j , Xi, x

)
(12)

=
∫ ti(H∗+∆)

−∞
K(u)du−

∫ ti(H∗+j∆)

−∞
K(u)du

=
∫ ti(H∗+∆)

ti(H∗+j∆)
K(u)du > 0,

whereti(H∗ + j∆) = ti(h∗j ). It implies, that

ϕ (h∗1, Xi, x) > ϕ (h∗2, Xi, x) > ... > ϕ
(
h∗j , Xi, x

)
> ...

for any fixedXi andx. Hence, it follows from (12), that

Φ
(
h∗j , n, x

)− Φ (h∗1, n, x)

=
n∑

i=1

(
ϕ (h∗1, Xi, x)− ϕ

(
h∗j , Xi, x

))

=
n∑

i=1

(∫ ti(H∗+∆)

ti(H∗+j∆)
K(u)du

)

∼ j∆n.

Evidently, for anyx

0 < Φ
(
h∗j , n, x

)− Φ(h∗1, n, x) ,

Φ
(
h∗j , n, x

)
> Φ

(
h∗j−1, n, x

)
> ... > Φ(h∗1, n, x)
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hold. Since for any constanth (1/n)Φ (h, n, x) = ξ for
some0 < ξ < 1 then (1/n)Φ

(
h∗j , n, x

)
∼ j∆ for any

fixed h∗j . Hence, it follows

sup
x∈Ω∗

|Fn(x)− FA
h∗j ,h1

(x)| ∼ j∆.

It implies, that the sequence{Fn(x) − FA
h∗i ,h1

(x), i =
1, 2, ...}, corresponding toh∗1, h

∗
2, ..., h

∗
j , ... does not go

to 0 ash∗i increases for anyx. Hence,

sup
−∞<x<∞

|Fn(x)− FA
h∗,h1

(x)| 6→ 0 as n →∞.

Therefore,h∗ → 0 asn →∞.

APPENDIX II
PROOF OFTHEOREM 2.

Proof: We denote

I(x, h) =
∫ ∞

−∞
[(F (x− hy)− F (x))

− (Fn(x− hy)− Fn(x))]K(y)dy.

Using the fact that the kernelK(x) hasm + 1th order
and applying Taylor’s expansion toF (x−hy) up to the
term of orderhm+1, we get for anyx that

∫ ∞

−∞
|F (x− hy)− F (x)|K(y)dy

= hm+1

∫ ∞

−∞

ym+1

(m + 1)!
|F (m+1) (θhy) |K(y)dy

≥ hm+1G,

whereG = η1/(m + 1)!
∫∞
−∞ ym+1K(y)dy is a positive

constant.
Suppose, that forα > 2

sup
x
|F (x)− Fn(x)| ≤ n−1/α. (13)

Then, it follows

|I(x, h)| ≤
∫ ∞

−∞
|F (x− hy)− Fn(x− hy)|K(y)dy

+ |F (x)− Fn(x)|
≤ 2n−1/α. (14)

Sinceh is selected from (9), we have from (13) and (14)

hm+1G ≤ sup
x

∫ ∞

−∞
|F (x− hy)− F (x)|K(y)dy

≤ sup
x
|I(x, h)|

+ sup
x

∫ ∞

−∞
|Fn(x− hy)− Fn(x)|K(y)dy

≤ 2n−1/α + 2δn−1/2

asn →∞.
Hence, from (13) it followsh ≤ ρn−1/(α(m+1)), where
ρ = (2(1 + δ)/G)1/(m+1), sinceα > 2. According to
well-known inequality [16]

IP{sup
x
|Fn(x)− F (x)| > η} ≤ 2 exp

(−2nη2
)

holds. Then it follows

IP{h > ρn−1/(α(m+1))}
< IP{sup

x
|F (x)− Fn(x)| > n−1/α}

≤ 2 exp
(
−2n1−2/α

)
.

APPENDIX III
PROOF OFTHEOREM 3.

Proof: Denoteϕ(x) = (d/dx)4 1/f(x).
It was proved in [13] that for assumedK(x) it holds

f̃A(x|h1, h∗) = f̂A(x|h∗)+cZ(nh∗)−1/2+o((nh∗)−1/2),
(15)

wherec is a constant,Z is a standard normal r.v., when
h1 ' n−1/5 was taken. The valuec = c(h1) may be
obtained from formula (4.5) of the latter paper and the
application of Lindeberg’s theorem tõfA(x|h1, h∗) −
f̂A(x|h∗) that is a sum of i.i.d. r.v.s.
Then the bias off̃A(x|h1, h∗) is the same as for
f̂A(x|h∗), i.e.

IEf̃A(x|h1, h∗)− f(x) =
K3

24
h4
∗ϕ(x) + o(h4

∗), (16)

holds, [13]. Suppose, thath∗ ≤ ρn−1/(α(m+1)), whereρ
is defined in Theorem 2. Then, it follows, that

IEf̃A(x|h1, h∗)− f(x)

≤ K3

24
ϕ(x)ρ4n−4/(α(m+1)) + o(n−4/(α(m+1))).

Forα = 9/(m+1) the bias off̃A(x|h1, h∗) has the order
n−4/9 for any positive integerm < 3.5, sinceα > 2.
Then, form = 3 we have

IP{IEf̃A(x|h1, h∗)− f(x) >
K3

24
ϕ(x)ρ4n−4/9}

< IP{h∗ > ρn−1/(α(m+1))}
≤ 2 exp

(
−2n1−2(m+1)/9

)
= 2 exp

(
−2n1/9

)
.



8

APPENDIX IV
PROOF OFCOROLLARY 1.

Proof: DenoteK∗
2 =

∫
K2(t)dt. From (15) and

since IE(Z · f̂A(x|h∗)) = 0 it holds then the variance of
f̃A(x|h1, h∗) is

var
(
f̃A(x|h1, h∗)

)
(17)

= var
(
f̂A(x|h∗)

)
+ c2(nh∗)−1 + o((nh∗)−1)

= (nh∗)−1
(
c2 + f(x)3/2K∗

2

)
+ o((nh∗)−1).

From Theorem 2 it follows thath∗ = O
(
n−1/9

)
if α =

9/(m + 1) andm = 3. Hence, from (16), (17) we have
that

MSE(f̃A(x|h1, h∗)) = (K3/24)2 h8
∗(ϕ(x))2

+(nh∗)−1
(
c2 + f(x)3/2K∗

2

)
+ o(h8

∗) ∼ n−8/9,

asn →∞, if a maximal solutionh∗ of (9) has the order
n−1/9.
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