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Abstract—The estimation of heavy-tailed probability % is a smoothing parameter or a bandwidth (it has
density function is an important tool for the description of approximately the same meaning as a bin width of the
the Web-traffic data and the solution of applied problems histogram estimate), is defined on the whole real axes.
such as classification. The paper is devoted to the non-yawever. it may provide sharp peaks at “outliers” or
parametric estimation of a heavy-tailed probability density over-smoothes the density due to the constant bandwidth
function by a variable bandwidth kernel estimator. Two o . g . L

The good fitting of heavy-tailed densities requires dif-

approaches are used: (1) a preliminary transformation of JETE i
the data to provide more accurate estimation of the density f€r€nt amount of smoothing in different locations of the

at the tail domain; (2) the discrepancy method based on the distribution. Roughly speaking, a tail domain of a heavy-
Kolmogorov-Smirnov statistic to evaluate the bandwidth tailed density containing sparse observations requires a
of the kernel estimator. It is proved that the discrepancy flat estimate therewith the body of the density requires

method may provide the fastest achievable order of the a sharper estimate. That is why, a variable bandwidth
mean squared error. An application to Web data analysis kernel estimator

is presented. Lo
Index Terms—Heavy-tailed distribution, discrepancy /" (zlh) = - Zf(Xi)1/2K ((17 - Xi)f(Xi)1/2/h>

method, tail index, Web-traffic. =1 )
approximates such densities better [1]. SinfdeX;) is
I. INTRODUCTION unknown, the following estimator
Measurements of Web-traffic shows that some WWW- A 1 O 12
traffic characteristics like file sizes, sizes and dura- S (@lha h) = ﬁthl(Xi) 3)
tions of sub-sessions are independent and heavy-tailed i=1
distributed. The latter implies that the “outliers” (or r—X; ; 1/2
) : K I (X5)
measurements those differ strongly from the main part

of observations) play in these data a significant role apdysed in practice. Usually, the non-variable bandwidth
cannot be extracted from consideration. kernel estimator (1) is used as a pilot estimafpfz).

In this paper, the non-parametric estimation of heavyne yariable bandwidth kernel estimator is not reliable
tailed densities by empirical sample” ={X,,....Xs} for the estimation of the density outside the range of
of independent identically distributed (i.i.d.) randonp,e sample at least for compactly supported kernels like
variables with the density functiofi(z), is considered. Epanechnikov’s kernek (z) = 3/4(1 — 22)11(] z |< 1).

The problem is that a histogram cannot be directl order to estimate the density outside the range of
applied to heavy-tailed densities since it is defined on thgs sample better and particularly to apply the estima-
bounded interval. It provides an absolutely misleading,s defined on bounded intervals (e.g., a histogram) to

estimation of the density at the “tail” domain. heavy-tailed densities, the preliminary transformation of
The kernel estimator the data may be useful. The survey of transformations is
. 1 & r— X, given in Section II.
fu(z) = nhZK( N l) ; (1) Another question is how to evaluate the bandwidth
i—1

in (2) and (3). The theory shows that jf has four
where K is a kernel function fromR to R (as a rule, bounded derivatives, the kernel is non-negative and sym-
K (z) is some probability density, e.g., a normal onejnetric (e.g. Epanechnikov’s kernel) and/ifis chosen



asymptotic to any constant multiple of /9, wheren is Let T'(z) be a monotone increasing continuously dif-
the sample size, then the mean squared evb6 L = ferentiable "one-to-one” transformation function (the
E (fA(x|h) _ f(x))Q) of (2) has the fastest achievabl@'eriva“‘_’e of the inverse f_unctiorT‘1 is assumed to

be continuous). We apply it to our dafé,, ..., X,, and
obtain the new sampl&?,...,Y, (Y; = T(X;)). The
Glistribution function ofY; is given by

rate n=%/9 [2]. Indeed, theM SFE reflects the accuracy
of the estimation at the main part of the density bett
but not at the tail where values are small.
For the practice the data-dependent selection methods G(z) =P{Y; <z} =P{T(X;) < z} 4)
of h (e.g., the cross-validation, the discrepancy method) . .
work better. Apart of computational problems caused =P{X; <T7(2)} = F(IT™ (x)),
by the search of maximum of the maximum likelijts density reads
hood functional, the cross-validation method has slow ) . RV
convergence rates and high sampling variability [3]. A go(z) =G (z) = f(IT (2))(T" (2)) .
yvelghted version of the cross-vglldatlon was proposqq]]e densitygo
in [4] for estimator (3). However, it was not proved th
this method provides the optimal order!/? of A and
consequently the fastest rate®/? of MSE. R /
In Section Il the discrepancy method is presented. It is f(x) = go(T(x))T (x). (5)
proved, that it may provide the variable bandwidth kern
. . ~ *8/9 .
estimator (?_>) WithV/ SE ~ n using the samples of standard kernel estimator (1) gg(z).
moderate sizes. The selection of7’(x) is a principal problem. By (4)
Further, we focus on estimate (3). We shall combine the . ) P bal p m. By
) transformatioril’(z) is completely determined by the
advantages of transformations of the data and the fisranste :
: \ —__distribution functionsG(x) and F'(xz). One can select
crepancy method to improve the behavior of the estimate ', Y 2
. . —g/9  any "target’G(z), but F'(z) is unknown.
outside of the sample and provide théSE ~ n : .
. . . . In [6] transformationsI’ : Ry — [0, 1] were proposed.
Let us explain why non-parametric density estlmatt?

S : )
with good behavior at the tail domain are required. Apagt was proved that for kermel estimates with compact
n

(z) of the r.v.Y; is estimated by some
aéstimatorgo(x) and after the re-transformation we get
the density estimate of th&,; by the formula:

8ne may take variable bandwidth kernel estimator (3) or

. . oo ernels the transformation to an isosceles triangular
of the visual data analysis and the estimation of momenis

H tri H _
of the distribution, this feature is very significant if densi- ensity¢™(x) on [0, 1] and for a histogram the transfor

ties of many populations are compared. Such comparisrgrziltIon o a uniform density"™ (x) provide the optimal

. . . e o onvergence rate in the metric of spatg Since such
is required in the classification (pattern recognition). () and, therefore, the distribution df; = T(X;)
one uses an empirical Bayesian classification algorithtan xend o,n the unkr110wn distribution fu]ncadﬁ i jis
then observatio_ns will bg class_ified by the Comparison.f?ﬁpossible to obtain an absolute identity gf an’d o7
the corresponding density estimates of each class. Si 8§¢uni(x) ). Hence, it i proposed in [6] to use instead
the object can arise in the tail domain as well as in t ? ' -

) ) . LT of I’ some parametric models. However, the concrete
body, a tail estimator with good properties is principal fOrrnodels were not indicated and their influence on the
€ . :

(?ecay rate at infinity of the re-transformed estimates was
ot discussed.
[7], [8] the families of fixed transformation®) (z)

@ndependent orf'(x)) given by

the classification. Application of classification techniqu
to Web data analysis is given in [5].

In Section IV variable bandwidth kernel estimator (3;5'
with the discrepancy method as a smoothing to
are applied to WWW-traffic characteristics. Preliminar

adapted transformation (7) of the data described in Ty (2) = P sign(N), if A #0,
Section Il is used. MPZ Ing, if A=0
are considered. Here, is the parameter minimizing the
ll. TRANSFORMATION APPROACH functional [,(¢" (y))2dy, g(x) is unknown density of the

Estimators with data transformations are the alternwansformed r.vY; = T\ (X) that requires a preliminary
tive to variable bandwidth kernel estimators. The backstimation. Since the functiofi,(¢” (y))?dy shows the
ground of the transformation idea is the necessity of tieervature of the density then such transformations are
different smoothing at different locations of a heavyapplied for better restoration of curvy but not necessary
tailed density. Then back-transformed density estimatesavy-tailed densities. In [9] the fixed transformation
with fixed smoothing parameters work like location? (x) = (2/7)arctan z, that provided a good accuracy
adaptive estimates. for some heavy-tailed densities is considered. However,



without the assumptions about the type of the distry,(z) is some estimate ofj(x) with the smoothing
bution any transformation may lead to a density thaarameterh.

is difficult to estimate by a limited sample and henc&ince for transformation (7) we havEly(T;l(:c)) =

one cannot provide an accurate estimation of the tailgs (1 — x)1+2‘/ atQ* =[0,1],i.e.,0 < Té(T{l(x)) <c

In order to improve the estimation at the tails in [5] @&olds atQ* then we get

transformation’ (x) : Ry — [0, 1], which is adapted

to the data (via the estimatg¢ of some parametet MISE"(Q) < c/ E(gn(y) —g(y))*dy.  (8)

called the tail inde¥ is proposed. To construd;(z) @

the distribution function of the triangular distributionlt means, that the order of the/ /.S E of re-transformed

PHri(z) = (22 — 22)W{x € [0,1]} + W{z > 1} with estimates af) is at least not worse than the order of the
the densityptt(z) = 2(1 — z)1{z € [0,1]} is taken MSE of g,(y).

as the "target” distribution functiot(z) and the Pareto

distribution function [1l. DISCREPANCY METHOD

vy 11—+ o)~V if 2 >0, ®) The idea of the discrepancy method is to sefects
3(7) = 0, if z<o0. a solution of the discrepancy equation
is taken as the "fitted” distribution functiof'(x). Then p(F,F,) =9.
N +tre i i . ~ ~
the transform from¥; (x) to @+ () is defined by the Here, F(z) = [*_ f()dt, f(t) is some estimate of the
formulae o 0o . L
density,0 is a known uncertainty of the estimation of the
Ty(z) = (q>+m)—1(\p&(x)) =1—4/1-Ts(z) (7) distribution functionF'(z) by the empirical distribution

function F,(t), i.e. § = p(F,F,), p(-,-) is a metric
=1—(1+A4z)" /D, in the space of distribution functions. The discrepancy
method was proposed and investigated in [11], [12] for
The Pareto choice is widespread and motivated byt smoothing of nonparametric density estimates. Since
theorem, [10] which states that, for a certain class gfig usually unknown, in these papers some quantiles of

distributions and for a sufficiently high thresholdof  he |imit distribution of the Mises-Smirnov statistic and
the r.v. X, the conditional distribution of the overshookg|mogorov-Smirnov statistié

Y = X — u, provided thatX exceedsu, converges to a

Generalized Pareto distribution. The triangular "target” VnDp=+/n  sup |F(x)— Fu(z)|
distribution function is selected in such a way to get the Teonesee _ o
continuous density of the transformed m — T,?(Xl), were used ag. For K0|m090I’OV-SmII‘nOV statistic one
when the estimaté deviates fromy. The choice of a €an take the valug = 0.5 corresponding to the mode
uniform distribution function as the "target” distribution®f the distribution of the latter statistic [11]. Lét. be
function leads to a discontinuity of the density f at @ solution of the equation

1 and, hence, to the problem in the density estimation. sup | Fu(x) — Fffhl(x)\ — 12, 9)
As a quality measure of the re-transformed kernel es- —00<T<00

timate of f(x) one may consider the mean integrated A oz A
squared errorN{/ ISE at the intervak?) where .}, (z) = Ny hl’h_)dt' _ .
Further, we assume that the estimate (1) is takefi,as

MISE"#,9) =E [ (f(z) - f(x))%d in (3).
%) /Q(f($) fla))ds Theorem l:Let X" = {X;,...,X,} be iid. rv.s

— E [ (6r(T- — o(T- 27 (VT with a density f(x). Let the non-random bandwidth
[ T3 @) = o1 @) P Ty () Wi @ denst L o e

N _ continuous, positive and satisfies
— E [ (@) o) ) P

K K =1.
whereQ* = T (Q2) andg(z) is the density, which is ac- sup K(z) < oo, /R (z)d

tually estimated instead gf(x) = T @)T () Then any solutiorh, = h.(n) of equation (9) obeys the
(sincey # 7), condition

g(z) = f(T5 () (T3 (x)" he —0, as n— oo

The tail index defines the shape of the tail. The distributions of these statistics do not dependrim).



Theorem 2:Let the densityf(z) be estimated by vari- IV. APPLICATION TO WEB-TRAFFIC
able bandwidth kernel estimage! (z|h1, h) (3). Assume CHARACTERISTICS
the conditions onf(x) and K(z) given in Theorem
1. In addition, we assume thak(z) has the order
m + 1,2 f(x) hasm — 1 continuous derivatives and its
mth derivative is bounded in the neighborhood ®f 11
0 <m < |f™(x)] < ne, m andn, are constants.
Let the non-random bandwidth, in f,, obeys the
conditions:h; — 0, nh; — oo asn — oo. Then any
solutionh, = h.(n) of equation (9) obeys the condition =gk

P{h > pn~ /@D < exp (—infz/a> ,  (10)

([Y

wherep = (2(1 + 6)/G)Y(™*Y is a constant,

G=m/(m+ 1! [ y"t1K(y)dy, for anya > 2.
Remark 1:Pareto distribution (6) gives an example of ET IR S— L

the distribution that satisfies the condition of Theorem 2. T

Let & be a compact set ak. Givene > 0, we use the — Standard kemel estimate

fOIIOWing notation Of [13] “““ Variable bandwidth kernel estimate

D3S
T

R ={x € R:forsome yeR, |z —y|l < e}, 11073

where|| - || is the usual Euclidean norm.

Theorem 3:Let the densityf (z) be estimated by vari- s
able bandwidth kernel estimage! (z|h, h) (3). Assume o
the conditions orf (z) and K (x) given in Theorem 2 and
m = 3. In addition, we assume thgt(z) and 1/f(z) %1107
have four continuous derivatives arfdz) is bounded
away from zero, ofit. Besides, we assume thatx) is
symmetric. Let us assume, that a non-random bandwidth
hiin (3) obeysh; = c¢,n~'/5, wherec, is some constant.

Then for any solutiorh, of (9) we have -

P{Ef"(x|h1, he) — f(z) > P(x)n~} ST xs
w— Standard kernel estimate
< 2 exp (—27’L1/9) S e Variable bandwidth kernel estimate

4 .
where ¢(z) = (K3/24) (d/dx)" (1/f(x))p*, p is de- Fig. 1. The density estimation by standard kernel estimator (1)
fined in Theorem 2. and variable bandwidth estimator (3) with the smoothing by the

Corollary 1: Assume the conditions of Theorem 3discrepancy method (9) for the data sets s.s.s., d.s.s..
Let us assume, that (& - fA(:r|h))~: 0, where Z is

a standard normal r.v. Thed/SE(f*(z|hy,h.)) may  We apply estimators (1) and (3), whefres estimated
reach the orden%/° if a maximal solution of (9)h. by discrepancy method (9) to the real Web-data. These

has the orden—1/9. data gathered in the Ethernet segment of the Department
Remark 2:Since the function of the r.X; (that is Of Computer Science at the University ofiizburg were

one term in the sunf4(z|k)) and the normal distributed @nalyzed in papers [5], [9], [14]. The data describe the
r.v. Z are independent, the condition E- f4(z|h)) = 0 characteristics of sub-sessions, i.e., the size of a sub-

is not rigorous. session (s.s.s) in bytes and the duration of a sub-session
(d.s.s.) in seconds, as well as the characteristics of the
°A kernel has the ordep if the conditions transferred Web-pages, i.e., the size of the response (s.r.)

in bytes and the inter-response time (i.r.t.) in seconds.
The description of all these r.v.s is presented in Table I.
/pr(x)dx _ Ky 140 To simplify th_e _calculatlon the _data were scaled, i.e. all

values were divided by the scaling parametéee Table
hold. .

/K(m)d:czl, /miK(x)dmZO,izl,“.,p—l;



. TABLE |
T DESCRIPTION OF THE DATA

3 . s.s.5.(B) d.s.s.(sec) | s.r.(B) i.r.t.(sec)
- i Sample| 373 373 7107 7107
- | Size
. i Mini 128 2 0 6.543-107°
= - | _ mum
=10 i Maxi 5.884-107 | 9.058 - 10% | 2.052- 107 | 5.676 - 107
- mum
T ] Mean | 1.283-10° | 1.728 -10° | 5.395-10" | 80.908
N P StDev | 4.079-10°% | 5.206 - 10° | 4.931-10° | 728.266
tor . s 107 10° 10° 10°
pagE L—L L L TABLE II
X5 ESTIMATION OF THE TAIL INDEX AND THE BANDWIDTHS FOR
T randard kemel estimate WEB-TRAFFIC CHARACTERISTICS

°°°°° Variable bandwidth kernel estimata

IRT r.v. ’Ay k h1 hs hU 1.01 — T:Y (X(n))
s.s.s.| 0.949 | 50 | 0.059 | 0.155| 0.320| 0.382

S.I. 0.898 | 211 | 0.020 | 0.059| 0.175| 0.75

7] i.r.t. 0.712 | 211 | 0.042| 0.110| 0.250| 0.519

d.s.s.| 0.601| 50 | 0.170| 1.000| 1.100| 0.063

that at leaststh moments, > 2 of the distribution of
7] s.s.S., d.s.s., s.r., i.r.t. are not finite. The distributions of
considered Web-traffic characteristics are heavy-tailed.
. Hence, we may transform the data by transformation (7).
"'-."— The densitygy(z) of the new r.v. has been estimated
K by (1) and (3) with Epanechnikov’'s kernel. The re-
transformed estimate of the unknown densfiy:) was
calculated by (5):

9.9

HE
w— Standard kernel estimate
°°°°° Vatiable bandwidth kernel estimate

f(@) = 05601 — (1 +42) VD) (1 4 4a2) /L,

Fig. 2. The density estimation by standard kernel estimator (Bandwidthsh, andh, in Table Il have been selected by

and variable bandwidth estimator (3) with the smoothing by thge discrepancy method (9) with= 0.5 and correspond

discrepancy method (9) for the data sets s.r., i.r.t.. to estimates (1) and (3), respectively. The valy®f the
non-variable kernel estimatg,, (x) in (3) is calculated

by the formula
In order to check whether the measurements corre\f

sponded to samples s.s.s., s.r., d.s.s. and i.r.t. are derived . 243K, \/°
from heavy-tailed distributions, we estimated the tail hos = <W> "5

index v by the popular Hill's method
where s is the sample standard derivatiopy(K) =

[2?K(z)dz (the over-smoothing bandwidth selection

k
vk, n) = 21HX(”"+1> —InX@op), [17]). For Epanechnikov’s kernek = 3/5, jo = 1/5.
<

=

This formula provides the minimal upper bound of the
where X(;) < ... X(n) are order statistics of thetheoretical value ofi that corresponds to the optimal
sampleXx™. MSE ~ n~*%°% of estimate (1).

In Table Il one can see the estimate§:,n) and the The re-transformed kernel estimates (1) and (3) have
values of the number of retained data for all data been calculated for samples d.s.s. and s.s.s., s.r. and i.r.t.
sets that are taken from [14]. Observing the estimat@sgs. 1, 2). The estimatg(x) = g(x/s)/s is shown,

of v one may conclude that the estimates of the tailhereg(z/s) is the re-transformed estimate constructed
indexa = 1/~ are always less than for all considered by scaled data. A logarithmic scale both for tReand

data sets. It follows from the extreme value theory [15), axes is used.



The curves of re-transformed kernel estimate (1) corréist, we assume thdt, = h.(n) is a constant.

sponding to all sets apart of d.s.s. and of re-transformadsume for simplicity, that a sample contains only one
kernel estimate (3) for the sample s.r. are truncated. X;. Since for anyi

for large values ofr/s because the kernel is not wide "

enough. Such boundary effects are typical for kernel 0 </ K(u)du < 1

estimates that are used for finite densities. In this case, —0o0

the kernel estimate of the densiy(z) located on[0, 1] holds, then

may equal to 0 at the neighborhood bfbeyond the
maximal observation of the sample. It reflects on the re-
transformed estimate. It becomes equal to O at the tail
and logarithms of these values go-t@c. In [5] it was
shown that the choick = 1.01—T5 (X)), whereT}(x)

t1
—1<8(x—X;1)— K(u)du <1 V.

—00

Hence,

is transformation (7)X,, is the maximal observation in sup | Fa(z) — F;;x . ()]

the sample, may improve the boundary problems. One —00<L<00 o

can compare the values of, h, and1.01 — T5(X,)) t

in Table Il. Obviously, the discrepancy method selects = SEPW(ZE —X1) - K(u)du| =&,

—0o0

larger valuesh that are closer td.01 — T5(X(,), for . .
estimate (3) rather than for estimate (1). Hence, the &< & < 1. The same conclusion may be obtain when a
transformed estimate (3) provides better estimation of th@mple has more than one r.v.

density at the tail domain for Web-traffic characteristic&€t US assume that. is not a constant. Without loss of
generality, one can consider the sequence

APPENDIX | hi<hy<..<hj<..,
PROOF OFTHEOREM 1.
where b} = h.(n;) = H. + jA, A is some positive

Proof: Suppose, that, ~ 0 asn — oo. It constant, andV < n; < ng < ... <1 < ...

implies, that for any intege?N > 0 dn > N such

as h, = h«(n) > H,, where H, is some positive We get
constant. We shall prgve, that for such it holds o (h, Xi,2) — o (B}, X;, @) (12)
SUP_ oo < pcoo [ Fn(T) — Fyon (z)] # 0 asn — oco. ti(H.4A) ti(Ho+jA)
For any solutiom., one may representAthe divergence in — / K(u)du — / K(u)du
(9) using the replacement= (t — X;) fu, (Xi)"/?/hs o0 —o00
t(Ho +A)
Fy(z) — F 11 = / K(u)du >0,
(:) P b (z) (11) b (H.4jA)
1
= PCEDS wheret;(H, + jA) = t;(h%). It implies, that
=1

fhl(Xi)1/2 /IE K <tXZf1/2(X)) dt) Sp(h?vaz’l') > @(hzsz;fE) > .. > P (h;k7Xz,$> > ...

B h. h.,

— 00

for any fixed X; andx. Hence, it follows from (12), that

1« ks
- n2<9(xXi)/_ooK(u)du>» @(h;,n,x)—q)( * n, )

where we denote = t;(h.) = (z — X;) fn, (Xi)Y/2/hs, = > (e}, Xi,z) — ¢ (h5, Xi, 7))

=1
_ L, x>0, n ti(H.+A)

i=1 ti(H.+jA)

We denote ~ JAn.

t;
o (hye, Xj, ) = / K(u)du, Evidently, for anyx

0< @(h;f,n,x) — & (h],n,z),

n

& (hoyn,z) =Y <9 (= X;) — /_too K(u)du) .

=1 @(h;f,n,a:) >¢>( * n,x) >...> ®(h],n,x)

-1



hold. Since for any constart (1/n)® (h,n,z) = £ for
some0 < ¢ < 1 then(1/n)® h;f,n,a:> ~ jA for any
fixed h}. Hence, it follows

sup | F (x) = Fi p, ()] ~ 5A.

zeQ* ’
It implies, that the sequencgF,(z) — Fit, (z),i =
1,2,...}, corresponding tahi, h3, .o B, does not go
to 0 ash increases for any. Hence,

sup  |Fy(z) — Fit (@) A0 as  n— oo
—oo<Tr<oo
Therefore,h, — 0 asn — oo. [ |

APPENDIXII
PROOF OFTHEOREM 2.

Proof: We denote

I(2,h) :/_Z

- (Fn(x - hy) - Fn(m))]K(y)dy

Using the fact that the kerndl () hasm + 1th order
and applying Taylor's expansion #®(x — hy) up to the
term of orderh™*!, we get for anyz that

[e%s) m+1
:hm+l/ Y
oo (M+1)!

> G,

whereG =1 /(m+ 1)! [
constant.
Suppose, that forx > 2

(P — hy) - F(2)

|F(z — hy) — F(z)| K (y)dy

|FU (0hy) | K (y)dy
Y"1 K (y)dy is a positive

sup |[F(x) — Fu(z)| <n '/ (13)

Then, it follows

I(eh) < /_m F(x — hy) — Fa(e — hy)| K (y)dy
+ |F() - Fu(@)]
< 2n7Ve (14)

Sinceh is selected from (9), we have from (13) and (1%}nen form.

WG < sup / F(x — hy) — F(2)|K(y)dy
< sup|l(z,h)
+ sup / P — hy) — Fa(a)|K(y)dy
< op Ve posp1/2

asn — oo.

Hence, from (13) it followsh < pn~1/(2(m+1) where
p = (2(1+6)/G)Y™ Y sincea > 2. According to
well-known inequality [16]

P{sup |F(z) — F(x)| > n} < 2exp (—2n°)
holds. Then it follows

P{h > pn—l/(a(m-‘rl))}
< P{sup|F(z) — F,(z)| > n~ '/}

2 exp (—2711*2/0‘> )

IN

APPENDIXIII
PROOF OFTHEOREM 3.

Proof: Denotey(x) = (d/dx)* 1/ f(x).
It was proved in [13] that for assumédd(x) it holds

FA(lh)+eZ (nhe) Y2 o((nha) V),
(15)
wherec is a constantZ is a standard normal r.v., when
hy ~ n~1/> was taken. The value = c(h;) may be
obtained from formula (4.5) of the latter paper and the
application of Lindeberg's theorem t¢4(x|h1, h,) —
fA(z|h.) that is a sum of i.i.d. r.v.s.
Then the bias of f4(z|hy, h.) is the same as for
FA(x|hy), ie.

FA(xlhi, hy) =

K
hte(x) + o(hd),

T 24 (16)

EfA(x|h1, he) — f()
holds, [13]. Suppose, that, < pn~1/(@(m+1) wherep
is defined in Theorem 2. Then, it follows, that

E /A (z|hi, he) — f(2)
K3

< ﬂg0(:L,)p4n—4/(04(m—|—1)) _‘_O(n—4/(a(m+1)))‘

Fora = 9/(m+1) the bias off*(z|h1, h,) has the order
n~4/9 for any positive integem < 3.5, sincea > 2.
= 3 we have

~ K B
P{Ef*(z|h1, hs) — flz) > Ti’ga(x)ﬁln /91
P{h, > pnfl/(a(mﬂ))}
2exp (—in_g(m+1)/9) = 2exp (—in/g) .

IN A



APPENDIX IV [15] P. Embrechts, C. Kippelberg and T. Mikosch, Modelling
PROOF OFCOROLLARY 1. Extremal Events for Finance and Insurancespringer, Berlin,
1997.

Proof: Denote K = fK2(t)dt. From (15) and [16] B. L. S. Prakasa Rad\onparametric Functional Estimation

since EZ - fA(x|h,)) = 0 it holds then the variance of _ Academic, Orlando, Fla, 1983. o _
.]?A(.f’h h ) is [17] D. W. Scott,Multivariate Density Estimation Theory, Practice
17 *

and Visualization Wiley, N.Y., 1992.
var (FA(alhs, b)) (17)
= war (fA(m|h*)> + A (nhy) ™t + o((nhe) 1)

= (nha) 7 (¢ + f(2)P2K3) + ol(nha) ).

From Theorem 2 it follows that, = O (n=1/?) if a =
9/(m + 1) andm = 3. Hence, from (16), (17) we have
that

MSE(F(alhn, ha) = (Ks/24)° W(p())’
Hnh) (4 F (@)K ) + olh) ~ 0,

asn — oo, if a maximal solution, of (9) has the order
n=1/9, |
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