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Introduction: History of Deep Learning

Based on: Deep Learning [1]
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Introduction: Machine Learning - Concept

Based on: 
• Benchmark and Survey of Automated Machine Learning Frameworks [22]
• Automated Machine Learning: State-of-The-Art and Open Challenges [23]
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Introduction: Deep Learning - Concept

Based on: [27]
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Introduction: Deep Learning - Concept

Sources: [1, 34]



Introduction: ML vs DL - Differences

Based on: [32]
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Introduction: ML vs DL - Differences

Source: [1]

• Principal differences in approaches
• Often different initial requirements 

and issues occurring on the way

Source: [35]



Introduction: ML vs DL - Differences

Source: [31]
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Introduction: ML vs DL – Recap

Source: [50]



Deep Learning: Architectures - Recap

Source: [51]



Deep Learning: Architectures - Recap

Source: [50]

• x1,…xn - input signals 
• w1,…,wn - synaptic weights
• ϕ - activation function to limit the 

amplitude of the neuron output
• b – external bias



Deep Learning: Architectures - Recap

Activation functions
Binary step function Sigmoid Hyperbolic tangent (Tahn)

Rectified Linear Unit (ReLU)
And its variants

Softmax Self-Gated activation function [42]

• Values are always in the range [0,1]
• All values add up to 1



Deep Learning: Architectures - Recap

Loss (cost) functions:
• MSE
• Cross-entropy
• Cosine similarity

Layers:
• Dense (Fully connected)
• Softmax
• Convolutional

Optimization algorithm + Backpropagation 
• Gradient descent (SGD)
• Momentum method
• RMSProp (Hinton)
• Adagrad [56]



Introduction: ML vs DL – Practical Example

• Problem: handwritten digits recognition – USPS dataset [41]

Source: [40]



Introduction: ML vs DL – Practical Example

• Problem: handwritten digits recognition – MNIST database [29]

• One of the best k-NN results: accuracy 97.73% [28]
• SVMs: accuracy between 98.6% and 99.44% [29]
• Deep Learning: accuracy 99.84% [30]



Introduction: MNIST – DL Classification

Sources: [43, 44]

• Each image contains 28x28 = 784 pixels
• 0 – white, 255 - black

………...

3D representation available: https://www.youtube.com/watch?v=3JQ3hYko51Y

784 neurons 
as input

Hidden layer
(n = 16 neurons)

………... 10 neurons
as output y(x) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) T



Introduction: MNIST – Deep Learning Approach

Source: [43]

Input: 

Segmentation 28x28 greyscale:

Classification: 5 0 4

1 9 2



Introduction: MNIST – Idea of multiple layers

Source: [9]

Extracting local features and combining them 
to form higher order features

Distinctive features can appear in multiple locations. 
Approximate position must be preserved to allow the 

next levels to detect higher order, more complex features

Forcing hidden units to combine only local sources of 
information.



Deep Learning: Universal Approximation Theorem (Cybenko)

“A feedforward network with a single layer is sufficient to represent any function, but the layer may be 
infeasibly large and may fail to learn and generalize correctly”

I. Goodfellow [1]

“An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly approximated by a
multilayer feed-forward neural network with one hidden layer (that contains only finite number of
neurons) using neurons with arbitrary activation functions in the hidden layer and a linear neuron in
the output layer.”

Sources: [52], [50] 

More details, assumption and proofs can be found in [12], [52], [53], [54], [55], [1] 



Deep Learning: Using multiple hidden layers

Source: [50] 



Deep Learning: Architectures – CNN – LeNet-5

Architecture of LeNet-5 applied to digits recognition problem. Source: [24]

Accuracy of 99.2% on MNIST [11]



Deep Learning: Architectures – CNN – LeNet-5

Convolution Pooling Fully Connected

• Learning non-linear
combinations of the
high-level features as
represented by the
output of the
convolutional layer

• Approximating a
continuous non-linear
function

Gaussian connections or 
Softmax

Source: [57]

• Normalizing predictions
• Defining a loss



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 Summarized Architecture. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 Summarized Architecture. Source: [45]



Deep Learning: Architectures – CNN - AlexNet

AlexNet Architecture. Source: [13]



Deep Learning: Architectures – CNN - AlexNet

AlexNet Architecture. Source: [13]

Some facts:
• 62.3 million parameters
• 1.1 billion computation units in a forward pass
• Uses ReLU instead of Tanh
• Fixes vanishing gradient
• 6-times training speed boost 
• Same accuracy

• Uses Dropout
• Overlap pooling to reduce the size of network



Deep Learning: Architectures – CNN - VGGNet

VGGNet Architecture. Source: [14, 46]



Deep Learning: Architectures – R-CNN

• R-CNN – regions with CNN Features [47]
• Solves the variable out length problem for object detection
• Extremely time-demanding
• Very slow inference
• Fixed selective search algorithm

• Fast-R-CNN [15]:
• MUCH faster inference (up to 20 times compared to R-CNN)

• Faster R-CNN
• Further dramatic speed improvement (up to 250 times compared to R-CNN)

• Cascade R-CNN [48]



Deep Learning: Architectures

• RNN
• Generating Image Descriptions with Multimodal Recurrent Neural Network 

[49]
• LSTM:
• The foundations laid by Hochreiter and Schmidhuber [10]

• Boltzmann machine
• Autoencoders
• GANs [17]
• DBNs [12]
• AutoML [18], [19], [20]



Deep Learning Tasks

Notable practical applications
• Object Detection
• Semantic Segmentation
• Data Classification
• Data Generation

A comprehensive collection of state-of-the-art drafts/papers:
https://paperswithcode.com/sota



Deep Learning Today

Notable practical applications
• Autonomous driving
• Machine translation (NLP)
• Healthcare applications
• Fraud detection
• Search and recommender systems
• Various computer vision and audio-related challenges



Deep Learning in Healthcare

• Microscopy Analysis
• Object detection for medical images
• Tissue segmentation
• MRI segmentation
• Image registration and Medical Image Synthesis
• Drug Design

Sources: [36, 37]



Deep Learning in Fraud Detection

• Traffic monitoring
• Credit card fraud detection
• Cyber-Network Intrusion Detection
• IoT behavior tracking
• Traffic analysis and fraud detection in telecom

Sources: [38, 39]
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Appendix 1: Deep Learning Hardware

Source: [33]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 C1 Convolutional Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 S2 Average Pooling Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 S2 – C3 feature mapping. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 C3 Convolutional Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 S4 Average Pooling Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 C5 Fully Connected Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 C5 Fully Connected Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 F6 Fully Connected Layer. Source: [45]



Deep Learning: Architectures – CNN – LeNet-5

LeNet-5 Fully Connected Output Layer. Source: [45]


