
Chapter 10

Read-once functions
Martin C. Golumbic and Vladimir Gurvich

10.1 Introduction

In this chapter, we present the theory and applications of read-once Boolean functions, one
of the most interesting special families of Boolean functions. A function f is called read-
once if it can be represented by a Boolean expression using the operations of conjunction,
disjunction and negation, in which every variable appears exactly once. We call such an
expression a read-once expression for f . For example, the function

f0(a, b, c, w, x, y, z) = ay ∨ cxy ∨ bw ∨ bz

is a read-once function since it can be factored into the expression

f0 = y(a ∨ cx) ∨ b(w ∨ z)

which is a read-once expression.
Observe, from the definition, that read-once functions must be monotone (or unate),

since every variable appears either in its positive or negative form in the read-once expres-
sion (see Exercise 1). However, we will make the stronger assumption that a read-once
function is positive, simply by renaming any negative variable xi as a new positive variable
x′i. Thus, every variable will be positive, and we may freely rely on the results presented
earlier (in particular, in Chapters 1 and 4) on positive Boolean functions.

Let us look at two simple functions,

f1 = ab ∨ bc ∨ cd

519

520 CHAPTER 10. READ-ONCE FUNCTIONS

Figure 10.1: The co-occurrence graph of f0 = ay ∨ cxy ∨ bw ∨ bz.

Figure 10.2: The co-occurrence graphs of f1, f2, f3.

and
f2 = ab ∨ bc ∨ ac.

Neither of these is a read-once function; indeed, it is impossible to express them so that
each variable appears only once. (Try to do it.) The functions f1 and f2 illustrate the
two types of forbidden functions which characterize read-once functions, as we will see.
We begin by defining the co-occurrence graph of a positive Boolean function.

Let f be a positive Boolean function over the variable set V = {x1, x2, . . . , xn}. The
co-occurrence graph of f , denoted G(f) = (V,E), has vertex set V (the same as the set
of variables), and there is an edge (xi, xj) in E if xi and xj occur together (at least once)
in some prime implicant of f . In this chapter, we often regard a prime implicant as the
set of its literals. Formally, let P denote the collection of prime implicants of f . Then,

(xi, xj) ∈ E ⇐⇒ xi, xj ∈ P for some P ∈ P.

Figures 10.1 and 10.2 show the co-occurrence graphs of f0, f1, f2.
We denote by P4 the graph consisting of a chordless path on 4 vertices and 3 edges,

which is the graph G(f1) in Figure 10.2 (see also Appendix A). A graph is called P4-free

10.1. INTRODUCTION 521

if it contains no induced subgraph isomorphic to P4. The P4-free graphs are also known
as cographs (for “complement reducible graphs”); we will have more to say about them in
Section 10.4.

Since we have observed that f1 is not read-once, and since its co-occurrence graph
is P4, it would be reasonable to conjecture that the co-occurrence graph of a read-once
function must be P4-free. In fact, we will prove this statement in Section 10.3. But this is
not enough; in order to characterize read-once functions in terms of graphs, we will need
a second property called normality.1

To see this, note that the function

f3 = abc

has the same co-occurrence graph as f2, namely, the triangle G(f2) = G(f3) in Figure 10.2,
yet f3 is clearly read-once and f2 is not read-once. This example illustrates the motivation
for the following definition.

A Boolean function f is called normal if every clique of its co-occurrence graph is
contained in a prime implicant of f .

In our example, f2 fails to be normal, since the triangle {a, b, c} is not contained in
any prime implicant of f2. This leads to our second necessary property of read-once
functions, namely, that a read-once function must be normal, which we will also prove in
Section 10.3. Moreover, a classical theorem of Gurvich [393, 397] shows that combining
these two properties characterizes read-once functions.

Theorem 10.1. A positive Boolean function f is read-once if and only if its co-occurrence
graph G(f) is P4-free and f is normal.

A new proof of this theorem will be given in Section 10.3 as part of Theorem 10.6.
Read-once functions first appeared explicitly in the literature in the papers of Chein [173]

and Hayes [445] which gave exponential time recognition algorithms for the family (see
the historical notes at the end of this chapter). Gurvich [393, 396, 397] gave the first char-
acterization theorems for read-once functions; they will be presented in Section 10.3. Sev-
eral authors have subsequently discovered and rediscovered these and a number of other
characterizations. Theorem 10.1 also provides the justification for the polynomial time
recognition algorithm of read-once functions by Golumbic, Mintz and Rotics [374, 375] to
be presented in Section 10.5. In particular, we will show how to factor read-once functions
using the properties of P4-free graphs.

1The property of normality is sometimes called clique-maximality in the literature. It also appears in
the definition of conformal hypergraphs in Berge [64] and is used in the theory of acyclic hypergraphs.

522 CHAPTER 10. READ-ONCE FUNCTIONS

Read-once functions have been studied in computational learning theory where they
have been shown to constitute a class that can be learned in polynomial time. Section 10.6
will survey some of these results. Additional applications of read-once functions will be
presented in Section 10.7.

Before turning our full attention to read-once functions, however, we review a few
properties of the dual of a Boolean function and prove an important result on positive
Boolean functions that will be useful in subsequent sections.

10.2 The dual subimplicant theorem for positive Boolean

functions

In this section, we first recall some of the relationships between the prime implicants of a
function f and the prime implicants of its dual function fd in the case of positive Boolean
functions. All of these properties have been presented in Chapter 1 and Chapter 4. We
then present a characterization of the subimplicants of the dual of a positive Boolean
function, due to Boros, Gurvich and Hammer [110]. This result will be used later in the
proof of one of the characterizations of read-once functions.

10.2.1 Implicants and dual implicants

The dual of a Boolean function f is the function fd defined by

fd(X) = f(X),

and an expression for fd can be obtained from any expression for f by simply interchanging
the operators ∧ and ∨ as well as the constants 0 and 1. In particular, given a DNF
expression for f , this exchange yields a CNF expression for fd. This shows that the dual
of a read-once function is also read-once.

The process of transforming a DNF expression of f into a DNF expression of fd is
called DNF dualization; its complexity for positive Boolean functions is still unknown,
the current best algorithm being quasi-polynomial [323], see Chapter 4.

Let P be the collection of prime implicants of a positive Boolean function f over the
variables x1, x2, . . . , xn, and let D be the collection of prime implicants of the dual function
fd. We assume throughout that all of the variables for f (and hence for fd) are essential.
We use the term “dual (prime) implicant” of f to mean a (prime) implicant of fd. For
positive functions, the prime implicants of f correspond precisely to the set of minimal

10.2. THE DUAL SUBIMPLICANT THEOREM 523

true points minT (f), and the dual prime implicants of f correspond precisely to the set
of maximal false points maxF (f), see Sections 1.10.3 and 4.2.1.

Theorem 4.7 states that the implicants and dual implicants of a Boolean function f ,
viewed as sets of literals, have pairwise non-empty intersections. In particular, this holds
for the prime implicants and the dual prime implicants. Moreover, the prime implicants
and the dual prime implicants are minimal with this property, that is, for every proper
subset S of a dual prime implicant of f , there is a prime implicant P such that P ∩S = ∅.

In terms of hypergraph theory, the prime implicants P form a clutter (i.e., a collection
of sets, or hyperedges, such that no set contains another set), as does the collection of
dual prime implicants D.

Finally, we recall the following properties of duality to be used in this chapter and
which can be derived from Theorems 4.1 and 4.19.

Theorem 10.2. Let f and g be positive Boolean functions over {x1, x2, . . . , xn}, and let
P and D be the collections of prime implicants of f and g, respectively. Then the following
statements are equivalent:

(i) g = fd;
(ii) for every partition of {x1, x2, . . . , xn} into sets A and A, there is either a member

of P contained in A or a member of D contained in A, but not both;
(iii) D is exactly the family of minimal transversals of P;
(iv) P is exactly the family of minimal transversals of D;
(v) (a) for all P ∈ P and D ∈ D, we have P ∩D 6= ∅ and

(b) for every subset B ⊆ {x1, x2, . . . , xn}, there exists D ∈ D such that D ⊆ B if
and only if P ∩B 6= ∅ for every P ∈ P.

We obtain from Theorem 10.2(v) the following characterization of dual implicants.

Theorem 10.3. A set of variables B is a dual implicant of the function f if and only if
P ∩B 6= ∅ for all prime implicants P of f .

10.2.2 The dual subimplicant theorem

We are now ready to present a characterization of the subimplicants of the dual of a
positive function, due to Boros, Gurvich and Hammer [110]. This characterization is
interesting on its own and also provides a useful tool for proving other results.

Let f be a positive Boolean function over the variables V = {x1, x2, . . . , xn}, and let
fd be its dual. As before, P and D denote the prime implicants of f and fd, respectively.
We assume throughout that all of the variables of f (and fd) are essential.

524 CHAPTER 10. READ-ONCE FUNCTIONS

A subset T of the variables is called a dual subimplicant of f if T is a subset of a dual
prime implicant of f , i.e., if there exists a prime implicant D of fd such that T ⊆ D. A
proper dual subimplicant is a non-empty proper subset of a dual prime implicant.

Example 10.1. Let f = x1x2∨x2x3x4∨x4x5. Its dual is fd = x1x3x5∨x1x4∨x2x4∨x2x5.
The proper dual subimplicants of f are the pairs {x1, x3}, {x3, x5}, {x1, x5} and the five
singletons {xi}, i = 1, . . . , 5. �

We will make use below of the following consequence of Theorem 10.3.

Remark 10.1. Let T be a subset of the variables {x1, x2, . . . , xn}. If T is a proper dual
subimplicant of f , then there exists a prime implicant P ∈ P such that P ∩ T = ∅. �

Let T be a subset of the variables. Our goal will be to determine whether T is contained
in some D ∈ D, i.e., whether T is a dual subimplicant. We define the following sets of
prime implicants of f , with respect to the set T :

P0(T) = {P ∈ P|P ∩ T = ∅},

and, for all x ∈ T ,

Px(T) = {P ∈ P|P ∩ T = {x}}.

Note that by Theorem 10.3, P0(T) is empty if and only if T is a dual implicant, and by
Remark 10.1, P0(T) is nonempty when T is a proper dual subimplicant. The remaining
prime implicants in P , which contain two or more variables of T , will not be relevant for
our analysis. (We may omit the parameter T from our notation when it is clear which
subset is meant.)

A selection S(T), with respect to T , consists of one prime implicant Px ∈ Px(T) for
every x ∈ T . A selection is called covering if there is a prime implicant P0 ∈ P0(T) such
that P0 ⊆

⋃

x∈TPx. Otherwise, it is called non-covering. (See Example 10.2.)

We now present the characterization of the dual subimplicants of a positive Boolean
function from [110].

Theorem 10.4. Let f be a positive Boolean function over the variable set {x1, x2, . . . , xn},
and let T be a subset of the variables. Then T is a dual subimplicant of f if and only if
there exists a non-covering selection with respect to T .

10.2. THE DUAL SUBIMPLICANT THEOREM 525

Proof. Assume that T is a dual subimplicant of f , and let D ∈ D be a prime implicant
of fd for which T ⊆ D. For any variable x ∈ T the subset D\{x} is a proper subset of D,
and therefore, by Remark 10.1 (or trivially, if D = {x}), there exists a prime implicant
Px ∈ P such that Px ∩ (D \ {x}) = ∅. Since Px ∩ D 6= ∅ by Theorem 10.3, we have
{x} = Px ∩D = Px ∩ T , that is, Px ∈ Px(T).

If S = {Px|x ∈ T} were a covering selection, then there would exist a prime implicant
P0 ∈ P0(T) such that P0 ⊆

⋃

x∈TPx. But this would imply

P0 ∩D ⊆ (
⋃

x∈T
Px) ∩D =

⋃

x∈T
(Px ∩D) = T

which together with P0∩T = ∅ would give P0∩D = ∅, contradicting Theorem 10.3. Thus,
the selection S we have constructed is a non-covering selection with respect to T . (Note
that in the special case when T = D, we would have P0(T) empty, and any selection
would be non-covering.)

Conversely, suppose there exists a non-covering selection S = {Px|x ∈ T} where
Px ∈ Px(T). Since S is non-covering, we have for all P0 ∈ P0(T) that

P0 *
⋃

x∈T
Px.

Let B be defined as the complementary set

B =
(

{x1, x2, . . . , xn} \
⋃

x∈T
Px

)

∪ T.

Clearly, for any prime implicant P0 ∈ P0(T), we have P0 ∩ B 6= ∅, since S is non-
covering. Moreover, by definition, all other prime implicants P ∈ P \ P0(T) intersect T
and, therefore, they too intersect B, since T ⊆ B. Thus, we have shown that P ∩ B 6= ∅
for all P ∈ P, implying that B is a (not necessarily prime) dual implicant.

Let D ∈ D be a dual prime implicant such that D ⊆ B. From the definition of B, it
follows that Px ∩ B = {x} for all x ∈ T . But each Px intersects D since Px is a prime
implicant and D is a dual prime implicant, which together with the fact that D ⊆ B

implies that Px ∩D = {x}. Hence, T ⊆ D, proving that T is a dual subimplicant. �

We will often apply Theorem 10.4 in its contrapositive form or in its dual form, as
follows.

Remark 10.2. A subset T is not a dual subimplicant of f if and only if every selection
with respect to T is a covering selection. �

526 CHAPTER 10. READ-ONCE FUNCTIONS

Remark 10.3. We may also apply Theorem 10.4 to subimplicants of f and dual selec-
tions, where the roles of P and D are reversed in the obvious manner. �

Example 10.2. Consider the positive Boolean function

f = adg ∨ adh ∨ bdg ∨ bdh ∨ eag ∨ ebg ∨ ecg ∨ eh

whose co-occurrence graph is shown in Figure 10.3.
(i) Let T = {b, c, h}. We have

P0(T) = {adg, eag}, Pb(T) = {bdg, ebg}, Pc(T) = {ecg}, Ph(T) = {adh, eh}.

The selection S = {bdg, ecg, eh} is non-covering since {a, d, g}, {a, e, g} * {b, c, d, e, g, h},
hence by Theorem 10.4, T is a dual subimplicant.

(ii) Now let T ′ = {a, b, g}. We have

P0(T
′) = {eh}, Pa(T

′) = {adh}, Pb(T
′) = {bdh}, Pg(T

′) = {ecg}.

There is only one possible selection S ′ = {adh, bdh, ecg} and S ′ is a covering selection
since {e, h} ⊆ {a, b, c, d, e, g, h}. Hence, by Remark 10.2, T ′ is not a dual subimplicant.

It can be verified that T is contained in the dual prime implicant abch, and that in
order to extend T ′ to a dual implicant it would be necessary to add either e or h, however,
neither abeg nor abgh are prime (since abe, bgh ∈ D), see Exercise 5. �

The problem of recognizing whether a given subset T is a dual subimplicant of a
positive function f given by its complete DNF was shown to be NP-complete by Boros,
Gurvich and Hammer [110]. However, they point out that Theorem 10.4 can be applied
in a straightforward manner to answer this recognition problem in O(n|f |1+min{|T |,|P0(T)|})
time, where |f | denotes the number of literals in the complete DNF of f . This becomes
feasible for very small and very large values of |T |, such as 2, 3, n− 2, n− 1. Specifically,
by applying this for every pair T = {xi, xj}, 1 ≤ i < j ≤ n, we obtain the following.

Theorem 10.5. The co-occurrence graph G(fd) of the dual of a positive Boolean function
f can be determined in polynomial time, when f is given by its complete DNF. The
complexity of determining all the edges of G(fd) is at most O(n3|f |3).

Proof. Consider a given pair T = {xi, xj}. We observe the following:

10.2. THE DUAL SUBIMPLICANT THEOREM 527

Figure 10.3: The co-occurrence graph for Example 10.2.

(1) If either Pxi
or Pxj

is empty, then there is no possible selection (covering or non-
covering). Hence, Theorem 10.4 implies that xi and xj are not contained together in a
dual prime implicant, and therefore, are not adjacent in G(fd).

(2) If both Pxi
and Pxj

are non-empty, but P0 is empty, then there is a selection and
every selection will be non-covering. Hence, Theorem 10.4 implies that {xi, xj} is a dual
subimplicant, and so xi and xj are adjacent in G(fd).

(3) If all three sets P0,Pxi
and Pxj

are non-empty, then we may have to check all
possible O(|f |2) selections before knowing whether there is a non-covering selection.

We leave a detailed complexity analysis as an exercise for the reader. �

Example 10.3. Let us calculate G(fd) for the function f = abc∨ bde∨ ceg, as illustrated
in Figure 10.4.

The pair (a, b) is not an edge: indeed, we have in this case Pa = ∅, so a and b are not
adjacent in G(fd). Similarly, (a, c), (b, d), (c, g), (d, e), (e, g) are also non-edges.

The pair (b, c) is an edge: in this case, both Pb and Pc are non-empty, but P0 is empty,
so b and c are adjacent in G(fd). Similarly, (b, e), (c, e) are also edges.

The pair (a, e) is an edge: in this case, as in the previous one, both Pa 6= ∅ and Pe 6= ∅,
but P0 = ∅, so a and e are adjacent in G(fd). Similarly, (b, g), (c, d) are also edges.

The pair (a, d) is an edge: in this case, Pa = {abc}, Pd = {bde}, P0 = {ceg}. Since
{c, e, g} * {a, b, c, d, e}, we conclude that a and d are adjacent in G(fd). Similarly,
(a, g), (d, g) are also edges.

Notice what happens if we add an additional prime implicant bce to the function f in
this example. Consider the function f ′ = abc ∨ bde ∨ ceg ∨ bce. Then ad is not a dual

528 CHAPTER 10. READ-ONCE FUNCTIONS

Figure 10.4: The co-occurrence graphs of f and fd in Example 10.3.

subimplicant of f ′ although it was of f . Indeed, there is still only one selection {abc, bde}
but now it is covering, since it contains bce. By symmetry, neither ag nor dg are dual
subimplicants of f ′. �

10.3 Characterizing read-once functions

In this section, we present the mathematical theory underlying read-once functions due to
Gurvich [393, 396, 397] and rediscovered by several other authors, see [271, 272, 514, 648].
The algorithmic aspects of recognizing and factoring read-once functions will be presented
in Section 10.5.

Recall from Section 10.1 that a read-once expression is a Boolean expression in which
every variable appears exactly once. A read-once Boolean function is a function that
can be transformed (i.e., factored) into a read-once expression over the operations of
conjunction and disjunction. We have also assumed read-once functions to be positive.

A positive Boolean expression, over the operations of conjunction and disjunction,
may be represented as a (rooted) parse tree whose leaves are labeled by the variables
{x1, x2, . . . , xn}, and whose internal nodes are labeled by the Boolean operations ∧ and
∨. The parse tree represents the computation of the associated Boolean function according
to the given expression, and each internal node is the root of a subtree corresponding to
a part of the expression; see Figure 10.5. (A parse tree is a special type of combinational
circuit, as introduced in Section 1.13.2.) If the expression is read-once, then each variable

10.3. CHARACTERIZING READ-ONCE FUNCTIONS 529

Figure 10.5: The parse tree of the expression x2(x1 ∨ x3) ∨ x4(x3 ∨ x5) ∨ x5x1.

appears on exactly one leaf of the tree, and there is a unique path from the root to the
variable.

We begin by presenting a very useful lemma relating a read-once expression to the
co-occurrence graph of the function. It also shows that the read-once expression is unique
for a read-once function (Exercise 9).

Lemma 10.1. Let T be the parse tree of a read-once expression for a positive Boolean
function f over the variables x1, x2, . . . , xn. Then (xi, xj) is an edge in G(f) if and only
if the lowest common ancestor of xi and xj in the tree T is labeled ∧ (conjunction).

Proof. Since T is a tree, there is a unique path from the leaf labeled xi to the root. Thus,
for a pair (xi, xj there is a unique lowest common ancestor v of xi and xj.

The lemma is trivial if there is only one variable. Let us assume that the lemma is
true for all functions with fewer than n variables, and prove the result by induction. Let
u1, . . . , ur be the children of the root of T , and for k = 1, . . . , r, let Tk be the subexpression
(subtree) rooted at uk, denoting its corresponding function by fk. Note that the variables
at the leaves of Tk are disjoint from the leaves of Tl for k 6= l, since the expression is
read-once.

If the root of T is labeled ∨, then f = f1 ∨ · · · ∨ fr and the graph G(f) will be
the disjoint union of the graphs G(fk) (k = 1, . . . , r), since multiplying out each of the
expressions Tk will yield disjoint prime implicants of f . Thus, xi and xj are adjacent in
G(f) if and only if they are in the same Tk and adjacent in G(fk) and, by induction, if and
only if their lowest common ancestor (in Tk and hence in T) is labeled ∧ (conjunction).

If the root is labeled ∧, then f = f1 ∧ · · · ∧ fr and the graph G(f) will be the join of

530 CHAPTER 10. READ-ONCE FUNCTIONS

the graphs G(fk), (k = 1, . . . , r). That is, every vertex of the subgraph G(fk) is adjacent
to every vertex of the subgraph G(fl) for k 6= l, since multiplying out each expression Tk

and then expanding the entire expression T will put every pair of variables from different
subtrees into some (perhaps many) prime implicants. Therefore, if xi and xj are on leaves
of different subtrees, then they are connected in G(f) and their lowest common ancestor
is the root of T which is labeled ∧. If xi and xj are on leaves of the same subtree, then
again by induction, (xi, xj) is an edge in G(fk) if and only if the lowest common ancestor
of xi and xj is labeled ∧ (conjunction). �

We are now ready to present and prove the main characterization theorem of read-once
functions. We describe briefly what will be shown in our Theorem 10.6 appearing below.

We have already seen in Theorem 10.2 that for any positive Boolean function f , every
prime implicant P of f and every prime implicant D of its dual fd must have at least
one variable in common. This property is strengthened in the case of read-once functions,
by condition (iv) in Theorem 10.6, which claims that f is read-once if and only if this
common variable is unique. Moreover, this condition immediately implies (by definition)
that the co-occurrence graphs G(f) and G(fd) have no edges in common, for otherwise, a
pair of variables adjacent in both graphs would be contained in some prime implicant and
in some dual prime implicant. This is condition (iii) of our theorem, and already implies
that recognizing read-once functions has polynomial-time complexity (by Theorem 10.5).

Condition (ii) is a further strengthening of condition (iii). It says that in addition to
being edge-disjoint, the graphs are complementary, that is, every pair of variables either
appear together in some prime implicant or together in some dual prime implicant but
not both.

The remaining condition (v) characterizing read-once functions is the one mentioned
as Theorem 10.1 at the beginning of this chapter, namely, that the co-occurrence graph
G(f) is P4-free and the maximal cliques of G(f) are precisely the prime implicants of f
(normality). It is condition (v) that will be used in Section 10.5 to obtain an efficient
O(n|f |) recognition algorithm for read-once functions.

Example 10.4. The function

f4 = x1x2 ∨ x2x3 ∨ x3x4 ∨ x4x5 ∨ x5x1

whose co-occurrence graph G(f4) is the chordless 5-cycle C5, is normal but G(f4) is not
P4-free. Hence, f4 is not a read-once function. Its dual

fd
4 = x1x2x4 ∨ x2x3x5 ∨ x3x4x1 ∨ x4x5x2 ∨ x5x1x3,

10.3. CHARACTERIZING READ-ONCE FUNCTIONS 531

whose co-occurrence graph G(fd
4) is the clique (complete graph) K5 which is P4-free, is

not a normal function. �

Theorem 10.6. Let f be a positive Boolean function over the variable set {x1, x2, . . . , xn}.
Then the following conditions are equivalent:
(i) f is a read-once function;
(ii) the co-occurrence graphs G(f) and G(fd) are complementary, i.e., G(fd) = G(f);
(iii) the co-occurrence graphs G(f) and G(fd) have no edges in common, i.e., E(G(f)) ∩
E(G(fd)) = ∅;
(iv) for all P ∈ P and D ∈ D, we have |P ∩D| = 1;
(v) the co-occurrence graph G(f) is P4-free and f is normal.

Proof. (i) =⇒ (ii): Assume that f is a read-once function, and let T be the parse tree
of a read-once expression for f . By interchanging the operations ∨ and ∧, we obtain the
parse tree T d of a read-once expression for the dual fd. By Lemma 10.1, (xi, xj) is an edge
in G(f) if and only if the lowest common ancestor of xi and xj in the tree T is labeled
∧ (conjunction). Similarly, (xi, xj) is an edge in G(fd) if and only if the lowest common
ancestor of xi and xj in the tree T d is labeled ∧ (conjunction). It follows from the above
construction that G(f) and G(fd) are complementary.

(ii) =⇒ (iii): Trivial.

(iii)⇐⇒ (iv): As noted in the discussion above, by definition, the co-occurrence graphs
G(f) and G(fd) have no edges in common if and only if |P ∩ D| ≤ 1, for every prime
implicant P of f and every prime implicant D of its dual fd. However, for any positive
Boolean function we have |P ∩D| ≥ 1 by Theorem 10.2(v), which proves the equivalence.

(iv) =⇒ (v): We first prove that the function f is normal (Claim 1), and then that
the graph G(f) is P4-free (Claim 3). We may assume both conditions (iii) and (iv) since
we have already shown that they are equivalent.

Claim 1. The function f is normal, that is, every clique of G(f) is contained in a
prime implicant of f .

The claim is certainly true for any clique of size one, since we assume that all variables
are essential, and it is true for any clique of size two, by the definition of the co-occurrence
graph G(f). Let us consider the smallest value k (k ≥ 3) for which the claim fails, that
is, there exists a clique K = {x1, . . . , xk} of G(f) which is not a subimplicant of f . We
denote the subcliques of K of size k − 1 by Ki = K − {xi}, i = 1, . . . , k.

By our assumption of k being smallest possible, each set Ki is a subimplicant of f , so
each is contained, respectively, in a prime implicant Pi ∈ P which we can express in the

532 CHAPTER 10. READ-ONCE FUNCTIONS

form
Pi = Ki ∪ Ai

where K ∩ Ai = ∅, since K is not a subimplicant.
In addition, each variable xi ∈ K is contained in a dual prime implicant Di ∈ D,

which we can express in the form

Di = {xi} ∪Bi

where K ∩Bi = ∅, by our assumption (iv). Applying (iv) further, we note that

|Pi ∩Dj| = |(Ki ∪ Ai) ∩ ({xj} ∪Bj)| = 1

for all i, j. In the case of i 6= j, since xj ∈ Ki, this implies

Ai ∩Bj = ∅ (∀i 6= j). (10.1)

In the case of i = j, we obtain
|Ai ∩Bi| = 1

since the common variable cannot belong to K. This enables us to define

yi = Ai ∩Bi (i = 1, . . . k). (10.2)

Moreover, yi 6= yj for i 6= j by (10.1).
We now apply Theorem 10.4 (the dual subimplicant theorem). Consider a pair T =

{xi, xj} (1 ≤ i < j ≤ k). Since (xi, xj) is an edge of G(f), by assumption (iii), it is not
an edge of G(fd) and hence not a dual subimplicant. By Theorem 10.4, this implies that
every selection S with respect to T must be a covering selection.

Now, S = {Pi, Pj} is a selection for T = {xi, xj} since Pi ∩ {xi, xj} = {xj} and
Pj∩{xi, xj} = {xi}. Therefore, there exists a prime implicant P0 such that P0∩{xi, xj} =
∅ and P0 ⊆ Pi ∪ Pj. Thus, P0 ⊆ (K \ {xi, xj}) ∪ Ai ∪ Aj.

Since, 1 = |P0 ∩ Di| = |P0 ∩ Bi|, it follows from (10.2) that yi ∈ P0. Similarly,
1 = |P0 ∩Dj| = |P0 ∩ Bj|, so yj ∈ P0. Thus, (yi, yj) is an edge in G(f). In fact, since i
and j were chosen arbitrarily, the set Y = {y1, . . . , yk} is a clique in G(f).

Now, we apply Theorem 10.4 to the dual function fd, as suggested in Remark 10.3.
Since the clique K is not a subimplicant of f , every dual selection S ′ with respect to K
must be a covering dual selection. In particular, S ′ = {D1, . . . , Dk} is such a selection
since Di = {xi}∪Bi intersects K only in xi. Therefore, there exists a dual prime implicant
D0 satisfying D0 ∩K = ∅ and D0 ⊆

⋃

xi∈K({xi} ∪Bi), or

D0 ⊆
⋃

xi∈K
Bi. (10.3)

10.3. CHARACTERIZING READ-ONCE FUNCTIONS 533

For each i, we have 1 = |D0 ∩ Pi| = |D0 ∩ (Ki ∪ Ai)|. It therefore follows from
(10.1), (10.2) and (10.3) that D0 ∩ Pi = {yi}. Moreover, since i was chosen arbitrarily,
Y = {y1, . . . , yk} ⊆ D0, implying that Y is a clique in G(fd). This is a contradition to
(iii), since Y cannot be both a clique in G(f) and a clique in G(fd). This proves Claim 1.

Claim 2. If (x1, x2), (x2, x3) ∈ E(G(f)) and (x1, x3) 6∈ E(G(f)), then (x1, x3) ∈
E(G(fd)).

Suppose that (x1, x3) is not an edge of G(fd). Choose prime implicants

{x1, x2} ∪ A12, {x2, x3} ∪ A23 ∈ P

and dual prime implicants

{x1} ∪B1, {x3} ∪B3 ∈ D.

By our assumptions,

{x1, x2, x3} ∩ (A12 ∪ A23 ∪B1 ∪B3) = ∅.

By condition (iv), we have

|({x1, x2} ∪ A12) ∩ ({x1} ∪B1)| = 1 =⇒ |A12 ∩B1| = 0 (10.4)

|({x2, x3} ∪ A23) ∩ ({x3} ∪B3)| = 1 =⇒ |A23 ∩B3| = 0 (10.5)

and

|({x1, x2} ∪ A12) ∩ ({x3} ∪B3)| = 1 =⇒ |A12 ∩B3| = 1 (10.6)

|({x2, x3} ∪ A23) ∩ ({x1} ∪B1)| = 1 =⇒ |A23 ∩B1| = 1. (10.7)

From (10.6) and (10.7), we can define

y1 = A12 ∩B3

y3 = A23 ∩B1.

and from (10.4) and (10.5),

y1 6= y3.

On the one hand, since we have assumed that {x1, x3} is not a subimplicant of the dual
fd, by Theorem 10.4 we claim that every selection with respect to {x1, x3} is covering.
Now

S = {{x1, x2} ∪ A12, {x2, x3} ∪ A23}

534 CHAPTER 10. READ-ONCE FUNCTIONS

is such a selection, so there exists a prime implicant

P0 ⊆ {x2} ∪ A12 ∪ A23.

By condition (iv), (10.4) and (10.5), we have

|P0 ∩ ({x1} ∪B1)| = 1 =⇒ P0 ∩ ({x1} ∪B1) = y3

and
|P0 ∩ ({x3} ∪B3)| = 1 =⇒ P0 ∩ ({x3} ∪B3) = y1.

Hence, {y1, y3} ⊆ P0 and (y1, y3) is an edge of G(f), that is,

(y1, y3) ∈ E(G(f)). (10.8)

On the other hand, since we have also assumed that {x1, x3} is not a subimplicant
of the original function f , we again apply Theorem 10.4, this time in its dual form, by
claiming that every dual selection with respect to {x1, x3} is covering. Now,

S ′ = {{x1} ∪B1, {x3} ∪B3}

is such a dual selection, so there exists a dual prime implicant

D0 ⊆ B1 ∪B3.

By condition (iv), we have

|D0 ∩ ({x2, x3} ∪ A23)| = 1 =⇒ D0 ∩ ({x2, x3} ∪ A23) = y3

and
|D0 ∩ ({x1, x2} ∪ A12)| = 1 =⇒ D0 ∩ ({x1, x2} ∪ A12) = y1.

Hence, {y1, y3} ⊆ D0 and (y1, y3) is an edge of G(fd), that is,

(y1, y3) ∈ E(G(fd)). (10.9)

Finally, combining the conclusions of (10.8) and (10.9), we have a contradiction, since
G(f) and G(fd) cannot share a common edge. This proves Claim 2.

Claim 3. The graph G(f) is P4-free.
Suppose G(f) has a copy of P4 with edges (x1, x2), (x2, x3),(x3, x4) and nonedges

(x2, x4),(x4, x1),(x1, x3). By Claim 2, we have (x1, x3), (x2, x4) are edges in G(fd). Choose
prime implicants

{x1, x2} ∪ A12, {x3, x4} ∪ A34 ∈ P

10.3. CHARACTERIZING READ-ONCE FUNCTIONS 535

and dual prime implicants

{x1, x3} ∪B13, {x2, x4} ∪B24 ∈ D.

By repeatedly using condition (iv), it is simple to verify that the sets

{x1, x2, x3, x4}, A12 ∪ A34, B13 ∪B24 (10.10)

are pairwise disjoint.
Since {x1, x4} is not a subimplicant of f , Theorem 10.4 implies that the dual selection

S ′ = {{x1, x3} ∪B13, {x2, x4} ∪B24}

with respect to {x1, x4} must be covering. So there exists a dual prime implicant D0 ∈ D
satisfying D0 ⊆ S ′ where

S ′ = ({x1, x3} ∪B13) ∪ ({x2, x4} ∪B24)

and x1, x4 6∈ D0. By the pairwise disjointness of the sets in (10.10), we have

S ′ ∩ ({x1, x2} ∪ A12) = {x1, x2}

so
D0 ∩ ({x1, x2} ∪ A12) = {x2}.

Hence, x2 ∈ D0.
In a similar manner, we can show that

D0 ∩ ({x3, x4} ∪ A34) = {x3}.

Hence, x3 ∈ D0.
Thus, we have shown x2, x3 ∈ D0, implying that (x2, x3) is an edge of G(fd), a

contradiction to condition (iii). This proves Claim 3.
(v) =⇒ (i): Let us assume that f is normal and that G = G(f) is P4-free. We will show

how to construct a read-once formula for f recursively. In order to prove this implication,
we will use the following property of P4-free graphs (cographs) which we will prove in
Section 10.4, Theorem 10.7.

Claim 4. If a graph G is P4-free, then its complement G is also P4-free; moreover, if
G has more than one vertex, precisely one of G and G is connected.

The function is trivially read-once if there is only one variable. Assume that the
implication (v) ⇒ (i) is true for all functions with fewer than n variables.

536 CHAPTER 10. READ-ONCE FUNCTIONS

By Claim 4, one of G or G is disconnected. Suppose G is disconnected, with connected
components G1, . . . , Gr partitioning the variables of f into r disjoint sets. Then the prime
implicants of f are similarly partitioned into r collections Pi, (i = 1, . . . , r), defining
positive functions f1, . . . , fr, respectively, where Gi = G(fi) and f = f1∨· · ·∨fr. Clearly,
G(fi) is P4-free since it is an induced subgraph of G(f), and each fi is normal for the
same reason. Therefore, by induction, there is a read-once expression Fi for each i, and
combining these, we obtain a read-once expression for f given by F = F1 ∨ · · · ∨ Fr.

Now suppose that G is disconnected, and let H1, . . . , Hr be the connected components
of G, again partitioning the variables into r disjoint sets. Define Gi = Hi. We observe
that every vertex xi of Gi is adjacent to every vertex xj of Gj for i 6= j, so each maximal
clique of G(f) consists of a union of maximal cliques of G1, . . . , Gr. Moreover, since f is
normal, the maximal cliques are precisely the prime implicants. It now follows that by
restricting f to the variables of Gi, we obtain a normal function fi whose co-occurrence
graph G(fi) = Gi is P4-free, and f = f1 ∧ · · · ∧ fr. Therefore, by induction as before,
there is a read-once expression Fi for each i, and combining these, we obtain a read-once
expression for f given by F = F1 ∧ · · · ∧ Fr. �

Example 10.5. Let us again consider the function

f0 = ay ∨ cxy ∨ bw ∨ bz

whose co-occurrence graph G(f0) was shown in Figure 10.1. Clearly, f0 is normal, and
G(f0) is P4-free and has two connected components G1 = G{a,c,x,y} and G2 = G{b,w,z}.
Using the arguments presented after Claim 4 above, we can handle these components
separately, finding a read-once expression for each, and taking their disjunction.

For G1, we note that its complement G1 is disconnected with two components, namely
an isolated vertex H1 = {y} and H2 = G1{a,c,x} having two edges; we can handle the

components separately and take their conjunction. The complement H2 has an isolate {a}
and edge (c, x) which we combine with disjunction. Finally, complementing (c, x) gives
two isolates which are combined with conjunction. Therefore, the read-once expression
representing G1 will be y ∧ (a ∨ [c ∧ x]).

For G2, we observe that its complement G2 has an isolate {b} and edge (w, z) which
we combine with conjunction, giving b ∧ (w ∨ z). So the read-once expression for f0 is

f0 = [y ∧ (a ∨ [c ∧ x])] ∨ [b ∧ (w ∨ z)].

�

10.4. THE PROPERTIES OF P4-FREE GRAPHS AND COGRAPHS 537

10.4 The properties of P4-free graphs and cographs

The recursive construction of a read-once expression that we have just seen illustrated at
the end of the last section in Example 10.5, was based on the special properties of P4-free
graphs, and in particular the use of Claim 4. We present these structural and algorithmic
properties in this section.

The complement reducible graphs, or cographs, can be defined recursively as follows:

(1) a single vertex is a cograph,

(2) the union of disjoint cographs is a cograph,

(3) the join of disjoint cographs is a cograph,

where the join of disjoint graphs G1, . . . , Gk is the graph G with V (G) = V (G1) ∪ · · · ∪
V (Gk) and E(G) = E(G1) ∪ · · · ∪ E(Gk) ∪ {(x, y) |x ∈ V (Gi), y ∈ V (Gj), i 6= j}. An
equivalent definition can be obtained by substituting for (3) the rule

(3′) the complement of a cograph is a cograph,

see Exercise 15.
The building of a cograph G from these rules can be represented by a rooted tree T

which records its construction, where

(a) the leaves of T are labeled by the vertices of G,

(b) if G is formed from the disjoint cographs G1, . . . , Gk (k > 1), then the root r of T
has as its children the roots of the trees of G1, . . . , Gk; moreover,

(c) the root r is labeled 0 if G is formed by the union rule (2), and labeled 1 if G is
formed by the join rule (3).

Among all such constructions, there is a canonical one whose tree T is called the cotree
and satisfies the additional property that

(d) on every path, the labels of the internal nodes alternate between 0 and 1.

Thus, the root of the cotree is labeled 1 if G is connected and labeled 0 if G is
disconnected; an internal node is labeled 0 if its parent is labeled 1, and vice-versa. A
subtree Tu rooted at an internal node u represents the subgraph of G induced by the
labels of its leaves, and vertices x and y of G are adjacent in G if and only if their least
common ancestor in the cotree is labeled 1.

538 CHAPTER 10. READ-ONCE FUNCTIONS

Notice that the recursive application of rules (1)–(3) follows a bottom-up viewpoint of
the construction of G. But an alternate top-down viewpoint can be taken, as a recursive
decomposition of G, where we repeatedly partition the vertices according to either the
connected components ofG (union) or the connected components of its complement (join).

One can recognize whether a graph G is a cograph by repeatedly decomposing it
this way, until either the decomposition fails on some component H (both H and H are
connected) or it succeeds to reach all the vertices. The cotree is thus built top-down as
the decomposition proceeds.2

The next theorem gives several characterizations of cographs.

Theorem 10.7. The following are equivalent for an undirected graph G.

(i) G is a cograph.

(ii) G is P4-free.

(iii) For every subset X of vertices (|X| > 1), either the induced subgraph GX is discon-
nected or its complement GX is disconnected.

In particular, any graph G for which both G and G are connected, must contain
an induced P4. This claim appears in Seinsche [757]; independently, it was one of the
problems on the 1971 Russian Mathematics Olympiad and seven students gave correct
proofs, see [342]. The full version of the theorem was given independently by Gurvich
[393, 394, 396] and by Corneil, Lerchs and Burlingham [195] where further results on the
theory of cographs were developed. Note that it is impossible for both a graph G and its
complement G to be disconnected, see Exercise 7.

It is rather straightforward to recognize cographs and build their cotree in O(n3) time.
The first linear O(n + e) time algorithm for recognizing cographs appears in Corneil,
Perl and Stewart [196]. Subsequently, other linear time algorithms have appeared in
[140, 402, ?]; a fully dynamic algorithm is given in [766] and a parallel algorithm was
proposed in [233].

Proof of Theorem 10.7. (iii) =⇒ (i): This implication follows immediately from
the top-down construction of the cotree, as discussed above.

(i) =⇒ (ii): Let T be the cotree of G, and for vertex x ∈ V (G), let px denote the path
in T from the leaf labeled x to the root of the tree.

2This latter viewpoint is a particular case of modular decomposition [334] that applies to arbitrary
graphs, and any modular decomposition algorithm will produce a cotree when given a cograph, although
such general algorithms [401, 593] are more involved than is necessary for cograph recognition.

10.4. THE PROPERTIES OF P4-FREE GRAPHS AND COGRAPHS 539

Suppose that G contains an induced P4 with edges (a, b), (b, c), (c, d). Since c and d are
adjacent in G, their least common ancestor in T is an internal node u labeled 1. Consider
the path pa. Since both pc and pd must meet pa in an internal node labeled by a 0, it
follows that (i) they meet pa in the same internal node, say v, and (ii) v is an ancestor
of u.

Let us consider pb. Now, pb meets pa in an internal node z labeled 1. If z is above
v, then the least common ancestor of b and d will be z which is labeled 1, contradicting
the fact that b and d are non-adjacent in G. Furthermore, z 6= v since they have opposite
labels, which implies that z must lie below v on pa. However, in this case, the least
common ancestor of b and c will be v which is labeled 0, contradicting the fact that b and
c are adjacent in G. This proves the implication.

(ii) =⇒ (iii): Assume that G is P4-free, thus G is also P4-free, since P4 is self-
complementary. Suppose that there is an induced subgraph H of G such that both H and
its complement H are connected. Clearly, they are also P4-free, and can contain neither
an isolated vertex nor a universal vertex (one that is adjacent to all other vertices).

We will construct an ordering a1, a2, . . . , an of V (H) such that, for odd-indexed vertices
a2j−1:

(ai, a2j−1) ∈ E(H), for all i < 2j − 1

and, for even-indexed vertices a2j:

(ai, a2j) ∈ E(H), for all i < 2j.

In this case, an will either be an isolated vertex if n is even, or a universal vertex if n is
odd, a contradiction.

Choose a1 arbitrarily. Since a1 cannot be universal in H, there is a vertex a2 such that
(a1, a2) ∈ E(H). Since H is connected, there is a path in H from a1 to a2. Consider the
shortest such path. It consists of exactly two edges of H, say (a1, a3), (a2, a3) ∈ E(H),
since H is P4-free.

By a complementary argument, since H is connected and P4-free, there is a shortest
path in H from a2 to a3 consisting of exactly two edges of H, say (a2, a4), (a3, a4) ∈ E(H).
Now we argue that (a1, a4) ∈ E(H) since otherwise, H would have a P4.

We continue constructing the ordering in the same manner. Assume we have a1, a2, . . . , a2j;
we will find the next vertices in the ordering.

(Find a2j+1). There is a shortest path in H from a2j−1 to a2j consisting of exactly
two edges of H, say (a2j−1, a2j+1), (a2j, a2j+1) ∈ E(H). Note that a2j+1 has not yet
been seen in the ordering, since none of the ai is adjacent to a2j. We argue, for all
i < 2j − 1 that (ai, a2j+1) ∈ E(H) since otherwise, H would have a P4 on the vertices
{ai, a2j−1, a2j+1, a2j}. Thus, we have enlarged our ordering by one new vertex.

540 CHAPTER 10. READ-ONCE FUNCTIONS

(Find a2j+2). There is a shortest path in H from a2j to a2j+1 consisting of ex-
actly two edges of H, say (a2j, a2j+2), (a2j+1, a2j+2) ∈ E(H). Now we argue, for all
i < 2j that (ai, a2j+2) ∈ E(H) since otherwise, H would have a P4 on the vertices
{ai, a2j, a2j+2, a2j+1}. Thus, we have enlarged our ordering by another new vertex.

Eventually, this process orders all vertices, and the last one an will be either isolated
or universal, giving the promised contradiction. �

10.5 Recognizing read-once functions

Given a Boolean function f , can we efficiently determine whether f is a read-once func-
tion? This is known as the recognition problem for read-once functions, which we define
as follows.

Read-Once Recognition

Input: A representation of a positive Boolean function f by its list of prime implicants,
i.e., its complete disjunctive normal form (DNF) expression.
Output: A read-once expression for f , or “failure” if there is none.

Chein [173] and Hayes [445] first introduced read-once functions and provided an
exponential-time recognition algorithm for the family. Peer and Pinter [682] also gave
an exponential-time factoring algorithm for read-once functions, whose non-polynomial
complexity is due to the need for repeated calls to a routine that converts a DNF represen-
tation to a CNF representation, or vice-versa. We have already observed in Section 10.3
that combining Theorem 10.5 with condition (iii) of Theorem 10.6 implies that recogniz-
ing read-once functions has polynomial-time complexity, although without immediately
providing the read-once expression.

In this section, we present the polynomial-time recognition algorithm due to Golumbic,
Mintz and Rotics [373, 374, 375] and analyze its computational complexity. The algorithm
is described in Figure 10.6. It is based on condition (v) of Theorem 10.6, that a function is
read-once if and only if its co-occurrence graph is P4-free (i.e., a cograph) and the function
is normal. That is, we first test whether G(f) is P4-free and construct its cotree T , then
we test whether f is normal. Passing both tests assures that f is read-once. Moreover, T
will provide us with the read-once expression, see Remark 10.4 below.

Remark 10.4. The reader has no doubt noticed that the cotree of a P4-free graph is very
similar to the parse tree of a read-once expression. In fact, when a function is read-once,

10.5. RECOGNIZING READ-ONCE FUNCTIONS 541

Algorithm GMR Read-Once Recognition(f)

Step 1: Build the co-occurrence graph G(f).
Step 2: Test whether G(f) is P4-free. If so, construct the cotree T for G(f). Other-
wise, exit with “failure”.
Step 3: Test whether f is a normal function, and if so, output T as the read-once
expression. Otherwise, exit with “failure”.

Figure 10.6: Algorithm GMR Read-Once Recognition

its parse tree is identical to the cotree of its co-occurrence graph: just switch the labels
{0, 1} to {∨,∧}. On the other hand, by the same token, a cotree always generates a
read-once expression which represents “some” Boolean function g. Thus, the question to
be asked is:

Given a function f , although G(f) may be P4-free and thus has a cotree T , will the
read-once function g represented by T be equal to f , or not? (In other words, G(g) = G(f)
and, by construction, the maximal cliques of G(g) are precisely the prime implicants of
g, so will these also be the prime implicants of f?)

The function f = ab∨bc∨ac is a negative example; its graph is a triangle and g = abc.

The answer to our question lies in testing normality, i.e., comparing the prime impli-
cants of g with those of f , and doing it efficiently. �

The main result of this section is the following.

Theorem 10.8. [373, 374, 375] Given the complete DNF formula of a positive Boolean
function f on n variables, the GMR algorithm solves the Read-Once Recognition

problem in time O(n|f |), where |f | denotes the length of the DNF expression.

Proof. (Step 1.) The first step of the GMR algorithm is building the graph G(f). If an
arbitrary positive function f is given by its DNF expression, that is, as a list of its prime
implicants P = {P1, . . . , Pm}, then the edge set of G(f) can be found in O(

∑m

i=1 |Pi|
2)

time. It is easy to see that this is at most O(n|f |).
(Step 2.) As we have seen in Section 10.4, the complexity of testing whether the

graph G(f) is P4-free and providing a read-once expression (its cotree T) is O(n+ e), as
first shown in [196]. This is at worst O(n2) and is bounded by O(n|f |). (A straightforward
application of Theorem 10.7 would yield complexity O(n3)).

542 CHAPTER 10. READ-ONCE FUNCTIONS

(Step 3.) Finally, we show that the function f can be tested for normality in O(n|f |)
time by a novel method due to [373] and described more fully in [374, 375, 637]3. As in
Remark 10.4, we will denote by g the function represented by the cotree T ; we will verify
that g = f .

Testing normality.
We may assume that G = G(f) has successfully been tested to be P4-free, and that

T is its cotree. We construct the set of maximal cliques of G recursively, by traversing
the cotree T from bottom to top, according to Lemma 10.2 below. For a node x of T , we
denote by Tx the subtree of T rooted at x, and we denote by gx the function represented
by Tx. We note that Tx is also the cotree representing the subgraph GX of G induced by
the set X of labels of the leaves of Tx.

First we introduce some notation. Let X1, X2, . . . , Xr be disjoint sets, and let Ci be a
set of subsets of Xi (1 ≤ i ≤ r). We define the Cartesian sum C = C1⊗· · ·⊗Cr, to be the
set whose elements are unions of individual elements from the sets Ci (one element from
each set). In other words,

C = C1 ⊗ · · · ⊗ Cr = {C1 ∪ · · · ∪ Cr | Ci ∈ Ci, 1 ≤ i ≤ r}.

For a cotree T , let C(T) denote the set of all maximal cliques in the cograph corre-
sponding to T . From the definitions of cotree and cograph, we obtain:

Lemma 10.2. Let G be a P4-free graph and let T be the cotree of G. Let h be an internal
node of T and let h1, . . . , hr be the children of h in T .

(1) If h is labeled with 0, then C(Th) = C(Th1
) ∪ · · · ∪ C(Thr

).

(2) If h is labeled with 1, then C(Th) = C(Th1
)⊗ · · · ⊗ C(Thr

).

The following algorithm calculates, for each node x of the cotree, the set C(Tx) of
all the maximal cliques in the cograph defined by Tx. It proceeds bottom up, using
Lemma 10.2, and also keeps at each node x:

s(Tx): The number of cliques in C(Tx). This number is equal to the number of prime
implicants in gx.

3In [374] only a complexity bound of O(n2k) was claimed, where k is the number of prime implicants;
however, using an efficient data structure and careful analysis, it has been shown in [375], following [637],
that the method can be implemented in O(n|f |). For the general case of a positive Boolean function given
in DNF form, it is possible to check normality in O(n3k) time using the results of [504]; see Exercise 13.

10.5. RECOGNIZING READ-ONCE FUNCTIONS 543

L(Tx): The total length of the list of cliques at Tx, namely, L(Tx) =
∑

{|C||C ∈ C(Tx)},
which represents the total length of the list of prime implicants of gx.

A global variable L maintains the overall size of the clique lists as they are being built.
(In other words, L is the sum of all L(Tx) taken over all x on the frontier as we proceed
bottom up.)

The steps of the normality checking algorithm are given in Figure 10.7. This algorithm
correctly tests normality, since it tests whether the maximal cliques of the cograph are
precisely the prime implicants of f .

Complexity analysis.
The purpose of comparing s(Th) with k at each step is simply a speed-up mechanism to

assure that the number of cliques never exceeds the number of prime implicants. Similarly,
calculating L(Th), i.e., |gh| and comparing L with |f | at each step assures that the overall
length of the list of cliques will never exceed the sum of the lengths of the prime implicants.
(Note that we pre-compute L, and test against |f | before we actually build a new set of
cliques.)

For efficiency, we number the variables {x1, x2, . . . , xn}, and maintain both the prime
implicants and the cliques as lists of their variables. Then, each collection of cliques C(Tx)
is maintained as a list of such lists. In this way, constructing C(Th) in Step 3b(1) can be
done by concatenating the lists C(Th1

), . . . , C(Thr
); and constructing C(Th) in Step 3b(2)

can be done by creating a new list of cliques by repeatedly taking r (sub)cliques, one from
each set C(Th1

), . . . , C(Thr
) and concatenating these r (disjoint) lists of variables.

Thus, the overall calculation of C(Th) takes at most O(|f |) time. Since the number of
internal nodes of the cotree is less than n, the complexity of Steps 3a and 3b is O(n|f |).

It remains to compare the list of the prime implicants of f with the list of the maximal
cliques C(Ty), where y is the root of T . This can be accomplished using radix sort in O(nk)
time. Initialize two k × n bit matrices P and C filled with zeros. Each prime implicant
Pi is traversed (it is a list of variables) and for every xj ∈ Pi we assign Pi,j ← 1, thus,
converting it into its characteristic vector which will be in row i of P. Similarly, we
traverse each maximal clique Ci and convert it into its characteristic vector which will be
in row i of C. It is now a straightforward procedure to lexicographically sort the rows of
these two matrices and compare them in O(nk) time.

This concludes the proof, since the complexity of each step is bounded by O(n|f |).
�

Of course, as we are used by now, the form in which a function f is given influences
the computational complexity of recognizing whether it is read-once. For example, if

544 CHAPTER 10. READ-ONCE FUNCTIONS

Algorithm Checking Normality(f)

Step 3a: Initialize k to be the number of terms (clauses) in the DNF representation
of f . For every leaf a of T , set C(Ta) = {a} and set s(Ta) = 1, L(Ta) = 1, and L = n.

Step 3b: Scan T from bottom to top, at each internal node h reached, let h1, . . . , hr

be the children of h and do:

(1) If h is labeled with 0:

• set s(Th) = s(Th1
) + · · ·+ s(Thr

)

• if s(Th) > k stop, and claim that f is not normal; otherwise,

• set L(Th) = L(Th1
) + · · ·+ L(Thr

)

• L remains unchanged

• set C(Th) = C(Th1
) ∪ · · · ∪ C(Thr

)

(2) If h is labeled with 1:

• set s(Th) = s(Th1
)× · · · × s(Thr

)

• if s(Th) > k stop, and claim that f is not normal; otherwise,

• set L(Th) = Σ{|C1|+ · · ·+ |Cr| | (C1, . . . , Cr) ∈ C(Th1
)× · · · × C(Thr

)}

• set L← L+ L(Th)− [L(Th1
) + · · ·+ L(Thr

)]

• if L > |f | stop, and claim that f is not normal; otherwise,

• set C(Th) = C(Th1
)⊗ · · · ⊗ C(Thr

)

Step 3c: Let y be the root of T , and let C(Ty) be the set of maximal cliques of the
cograph, obtained by the preceding step.

• If s(Ty) 6= k or if |L| 6= |f | stop, and claim that f is not normal.

• Otherwise, compare the set C(Ty) with the set of prime implicants (from the
DNF) of f , using radix sort as described in the proof. If the sets are equal,
claim that f is normal. Otherwise, claim that f is not normal.

Figure 10.7: The algorithm for checking normality.

10.6. LEARNING READ-ONCE FUNCTIONS 545

f is initially represented by an arbitrary Boolean expression, we are required to pay a
preprocessing expense to test that f is positive and to transform f into its DNF expression
in order to apply the GMR algorithm. The same would be true if f were to be given as
a BDD. This preprocessing could be exponential in the size of the original input.

Actually, for a general (non-monotone) DNF expression ψ, Theorem 1.30 (page 61)
implies that it is NP-hard to decide whether ψ represents a read-once function. But the
question remains open for BDDs and for positive expressions (other than DNFs).

Exercise 25 raises some related open questions regarding the complexity of recognizing
a read-once function depending on the representation of the function. For example, we
may be fortunate to receive f as a very compact expression, yet not know how to take
advantage of this. When may it be possible to efficiently construct the co-occurrence
graph of a Boolean function and test normality for forms other than a positive DNF
representation?

10.6 Learning read-once functions

I’ve got a secret. It’s a Boolean function f . Can you guess what it is? You can ask me
questions, like “What is the value of f at the point X?” Can you figure out my mystery
function with just 20 questions?

The answer, of course, is yes, 20 questions are enough if the number of variables is
at most 4. Otherwise, the answer is no. If there are n variables, then there will be 2n

independent points to be queried, before you can be sure to “know” the function.

Suppose I give you a clue: The function f is a positive Boolean function. Now can
you learn f with fewer queries?

Again the answer is yes. The extra information given by the clue, allows you to ask
fewer questions in order to learn the function. For example, in the case n = 4, first try
(1,1,0,0). If the answer is true, then you immediately know that (1,1,1,0), (1,1,0,1) and
(1,1,1,1) are all true. If the answer is false, then (1,0,0,0), (0,1,0,0) and (0,0,0,0) are all
false. Either way, you asked one question and got four answers. Not bad. Now if you
query (0,0,1,1), you will similarly get two or three more free answers. In the worst case, it
could take 10 queries to learn the function (rather than 16 had you queried each point).

Learning a Boolean function in this manner is sometimes called Exact Learning

with Queries; see Angluin [19]. It receives as input an oracle for a Boolean function f ,
that is, a “black box” which can answer a query on the value of f at a given Boolean point
in constant time. It then attempts to learn the value of f at all 2n points and outputs a
Boolean expression that is logically equivalent to f .

546 CHAPTER 10. READ-ONCE FUNCTIONS

If we know something extra about the structure of the function f , then it may be
possible to reduce the number of queries required to learn the function. We saw this
above in our example with the clue (that the mystery function was positive). However,
even for positive functions, the number of queries needed to learn the function remains
exponential.

The situation is much better for read-once functions. In this case, the number of
required queries can be reduced to a polynomial number, and the unique read-once formula
can be produced, provided we “know” that the function is read-once. Thus, the read-once
functions constitute a very natural class of functions that can be learned efficiently and,
for this reason, they have been extensively studied within the computational learning
theory community.

For our purposes, we define the problem as follows.

Read-Once Exact Learning

Input: A black-box oracle to evaluate f at any given point, where f is known a priori
to be a positive read-once function.
Output: A read-once factorization for f .

Remark 10.5. There is a subtle but significant difference between the Exact Learning

problem and the Recognition problem. With recognition, we have a DNF expression for
f and must determine if it represents a read-once function. With exact learning, we have
an oracle for f whose correct usage relies upon the a priori assumption that the function
to be learned is read-once. So the input assumptions are different, but the output goal in
both cases is a correct read-once expression for f . Also, when measuring the complexity
of recognition, we count the algorithmic operations; when measuring the complexity of
exact learning, we must count both the operations implemented by the algorithm and the
number of queries to the oracle. �

As we have already seen in Section 10.5, the GMR recognition algorithm: (1) uses the
DNF expression to construct the co-occurrence graph G(f), then (2) tests whether G(f)
is P4-free and builds a cotree T for it, and (3) uses T and the original DNF formula to
test whether f is normal; if so, T is the read-once expression.

In contrast to this, Angluin, Hellerstein and Karpinski [20] give the exact learning
algorithm in Figure 10.8.

The main difference that concerns us, between AHK exact learning and GMR recog-
nition, will be Step 1, that is, how to construct G(f) using an oracle? We outline their

10.6. LEARNING READ-ONCE FUNCTIONS 547

Algorithm AHK Read-Once Exact Learning(f)

Step 0: Check whether f is a constant function, using the oracle: if f(1) = 0 then f
is constant 0; if f(0) = 1 then f is constant 1.
Step 1: Use the oracle to construct the co-occurrence graph G(f).
Step 2: Build a cotree T for G(f) (“knowing” a priori that it must be P4-free and
thus will succeed).
Step 3: Immediately output T as the read-once expression (“knowing” a priori that
f is normal).

Figure 10.8: Algorithm AHK Read-Once Exact Learning

solution through a series of exercises.
(A) In a greedy manner, we can determine whether a subset U ⊆ X of the variables

contains a prime implicant, and find one when the answer is positive. Exercise 16 gives
such a routine Find-PI-In(U) which has complexity O(n) plus |U | queries to the oracle. A
similar greedy algorithm Find-DualPI-In(U) will find a dual prime implicant contained
in U .

(B) An algorithm Find-Essential-Variables is developed in Exercises 17, 18 and
19 that not only finds the set Y of essential variables4 but in the process, for each variable
xi in Y , generates a prime implicant P [i] and a dual prime implicant D[i] containing xi.
This algorithm uses Find-PI-In and Find-DualPI-In and can be implemented to run
in O(n2) time using O(n2) queries to the oracle.

(C) Finally, we construct the co-occurrence graph G(f) based on the following Lemma
(whose proof is proposed as Exercise 14):

Lemma 10.3. Let f be a non-constant read-once function over the variables N = {x1, x2, . . . , xn}.
Suppose that Di is a dual prime implicant containing xi but not xj, and that Dj is a dual
prime implicant containing xj but not xi. Let Ri,j = (N \ (Di ∪ Dj)) ∪ {xi, xj}. Then
(xi, xj) is an edge in the co-occurrence graph G(f) if and only if Ri,j contains a prime
implicant.

We obtain G(f) using the oracle in the following way: For each pair of essential
variables xi and xj,

C.1: if xi ∈ D[j] or xj ∈ D[i] then (xi, xj) is not an edge of G(f).

4We have generally assumed throughout this chapter that all of the variables for a Boolean function
f (and hence for fd) are essential. However, in the exact learning problem, we may wish to drop this
assumption and need to find the set of essential variables.

548 CHAPTER 10. READ-ONCE FUNCTIONS

C.2: Otherwise, construct Ri,j from D[i] and D[j] and test whether Ri,j contains a
prime implicant using just one query to the oracle, i.e., is f(XRi,j) = 1? If so, then (xi, xj)
is an edge in G(f), otherwise, it is not an edge.

Complexity.

The computational complexity of the algorithm is determined as follows. Step 0
requires two queries to the oracle. Step 1 constructs the co-occurrence graph G(f) by first
calling the algorithm Find-Essential-Variables (Part B) to generate P [i] and D[i] for
each variable xi in O(n2) time using O(n2) queries, then it applies Lemma 10.3 (Part C)
to determine the edges of the graph. Step C.1 can be done in the same complexity as
Step B, however, Step C.2 uses O(n3) time and O(n2) queries, since, for each pair i, j, we
have O(n) operations and 1 query. Step 2, building the cotree T for G(f) takes O(n2)
time using one of the fast cograph algorithms of [140, 196, 402], and Step 3 takes no time
at all.

Summarizing the above, the overall complexity using the method of Angluin, Heller-
stein and Karpinski [20] will be O(n3) time and O(n2) queries. However, Dahlhaus sub-
sequently reported an alternative to Step C.2 in an unpublished manuscript [232] using
only O(n2) time. (Further generalizations by Raghavan and Schach [720] lead to the same
time bound.)

The main result, therefore, is the following.

Theorem 10.9. The Read-Once Exact Learning problem can be solved with the
AHK algorithm in O(n2) time, using O(n2) queries to the oracle.

Proof. The correctness of the AHK exact learning algorithm follows from Lemma 10.3,
Exercises 17-19 and Remark 10.4. �

Remark 10.6. If a lying, deceitful, cunning adversary were to place a non-read-once
function into our “black box” query oracle, then the exact learning method described
here would give an incorrect identification answer, since the “a priori read-once” assump-
tion is vital for the construction of G(f). (See the discussion in Exercise 27 concerning
what might happen if such an oracle were to be applied to a non-read-once function.) �

Further topics relating computational learning theory with read-once functions may
be found in [13, 20, 147, 450, 369, 370, 448, 696, 720, 776, 819, etc.].

10.7. RELATED TOPICS AND APPLICATIONS OF READ-ONCE FUNCTIONS549

10.7 Related topics and applications of read-once func-

tions

In this section, we briefly mention three topics related to read-once functions and appli-
cation areas in which they play an interesting role.

10.7.1 The readability of a Boolean function

Suppose a given function f is not a read-once function. In this case, we may still want to
obtain an expression which is logically equivalent to f and which has a small number of
repetitions of the variables. In [374], Golumbic, Mintz and Rotics introduced the notion
of the readability of a Boolean function to capture this notion.

We call a Boolean expression read-m if each variable appears at most m times in the
expression. A Boolean function f is defined to be a read-m function if it has an equivalent
read-m expression. Finally, the readability of f is the smallest number m such that f is
a read-m function.

In general determining the readability of a function may be quite difficult, and to the
best of our knowledge, it is not known whether there is a polynomial time algorithm which
given a function f in an irredundant DNF or CNF representation decides whether f is a
read-m function or not, for a fixed m ≥ 2, even in the case of m = 2.

It was therefore proposed in [374] to investigate restrictions of the general problem
to special cases of positive Boolean functions f identified by the structure of the co-
occurrence graph G(f). As a first step in this direction, they have shown the following
result.

Theorem 10.10. [374] Let f be a positive Boolean function. If f is a normal function
and its co-occurrence graph G(f) is a partial k-tree, then f is a read-2k function and a
read-2k expression for f can be obtained in polynomial (O(nk+1)) time.

Notice that if G(f) is a tree, then f would immediately be normal. Therefore, in the
case of k = 1, the Theorem 10.10 reduces to the following.

Corollary 10.1. Let f be a positive Boolean function. If G(f) is a tree, then f is a
read-twice function.

The definition of readability does not require the function to be positive. Thus, char-
acterizing read-twice Boolean functions and characterizing positive read-twice Boolean
functions, appear to be separate open questions.

550 CHAPTER 10. READ-ONCE FUNCTIONS

10.7.2 Factoring general Boolean functions

Factoring is the process of deriving a parenthesized Boolean expression or factored form
representing a given Boolean function. Since, in general, a function will have many
factored forms, the problem of factoring Boolean functions into shorter, more compact
logically equivalent expressions is one of the basic operations in the early stages in design-
ing logic circuits. Generating an optimum factored form (a shortest length expression) is
an NP-hard problem. Thus, heuristic algorithms have been developed in order to obtain
good factored forms.

An exception to this, as we have already seen, are the read-once functions. For a read-
once function f , the read-once expression is unique, it can be determined very efficiently,
and, moreover, it is the shortest possible expression for f . According to [682], read-
once functions account for a significant percentage of functions that arise in real circuit
applications. Some smaller or specifically designed circuits may indeed be read-once
functions, but most often they will not even be positive functions. Nevertheless, we can
use the optimality of factoring read-once functions as part of a heuristic method.

Such an approach for factoring general Boolean functions has been described in [372,
638], and is based on graph partitioning. Their heuristic algorithm is recursive and op-
erates on the function and on its dual, to obtain the better factored expression. As a
special class, which appears in the lower levels of the recursive factoring process, are the
read-once functions.

The original function f is decomposed into smaller components, for example, f =
f1 ∨ f2 ∨ f3, and when a component is recognized to be read-once, a special purpose
subroutine (namely, the GMR algorithm of Section 10.5) is called to factor that read-once
component efficiently and optimally. Their method has been implemented in the SIS logic
synthesis environment, and an empirical evaluation indicates that the factored expressions
obtained are usually significantly better than those from previous fast algebraic factoring
algorithms, and are quite competitive with previous Boolean factoring methods but with
lower computation costs (see [637, 638]).

10.7.3 Positional games

We introduce here the notions of normal, extensive and positional game forms, and then
show their relationship with read-once functions.

Definition 10.1. Given three finite sets S1 = {s1
1, s

1
2, ..., s

1
m1
}, S2 = {s2

1, s
2
2, ..., s

2
m2
},

which are interpreted as the sets of strategies of the players 1 and 2, and X = {x1, x2, ..., xk},
which is interpreted as the set of outcomes, a game form (of two players) is a mapping

10.7. RELATED TOPICS AND APPLICATIONS OF READ-ONCE FUNCTIONS551

g : S1 × S2 → X, which assigns an outcome x(s1, s2) ∈ X to every pair of strategies
s1 ∈ S1, s2 ∈ S2.

A convenient representation of a game form is a matrix M = M(g) whose rows are
labeled by S1, whose columns are labeled by S2 and whose elements are labeled by X.
For example,

M1 =

[

x1 x2

x2 x1

]

.

Each outcome x ∈ X may appear several times in M(g), because g may not be
injective. We can interpret M(g) as a game in normal form “but without payoff, which
is not given yet.”

Definition 10.2. Two strategies si
1 and si

2 of player i, where i = 1 or 2, are called
equivalent if for every strategy s3−i of the opponent, we have g(si

1, s
3−i) = g(si

2, s
3−i); in

other words, if in matrix M(g) the rows (i = 1) or the columns (i = 2) corresponding to
the strategies si

1 and si
2, are equal.

We will restrict ourselves by studying the game forms without equivalent strategies.

Definition 10.3. Given a read-once function f , we can interpret its parse tree (or read-
once formula) T (f) as an extensive game form (or game tree) of two players. The leaves
X = {x1, x2, ..., xk} of T are the final positions or outcomes. The internal vertices of T
are the internal positions. The game starts at the root of T and ends in a final position
x ∈ X. Each path from the root to a final position (leaf) is called a play. If an internal
node v is labeled by ∨ (respectively, by ∧), then it is the turn of player 1 (respectively,
player 2) to move in v. This player can choose any vertex which is a child of v in T .

A strategy of a player is a mapping which assigns a move to every position in which
this player has to move. In other words, a strategy is a plan of how to play in every
possible situation.

Any pair of strategies s1 of player 1 and s2 of player 2 define a play p(s1, s2) and an
outcome x(s1, s2) which would appear if both players implement these strategies.

Two strategies si
1 and si

2 of player i, where i = 1 or 2, are called equivalent if for
every strategy s3−i of the opponent the outcome is the same, that is, if x(si

1, s
3−i) =

x(si
2, s

3−i). By suppressing all but one (arbitrary) strategy from every class of equivalent
strategies, we obtain two reduced sets of strategies denoted by S1 = {s1

1, s
1
2, ..., s

1
m1
} and

S2 = {s2
1, s

2
2, ..., s

2
m2
}.

552 CHAPTER 10. READ-ONCE FUNCTIONS

The mapping g : S1 × S2 → X, which assigns the outcome x(s1, s2) ∈ X to every pair
of strategies s1 ∈ S1, s2 ∈ S2 defines a game form, which we call the normal form of the
corresponding extensive game form.

Note that such a mapping g = g(T) may be not injective, because different pairs of
strategies may generate the same play.

We call a game form g positional if it is the normal form of an extensive game form,
that is, if g = g(T (f)) for a read-once function f .

Example 10.6. In the extensive game form defined by the read-once formula ((x1∨x2)x3∨
x4)x5, each player has three strategies, and the corresponding normal game form is given
by the following (3× 3)-matrix:

M2 =





x1 x3 x5

x2 x3 x5

x4 x4 x5



 .

The game form given by the matrix

M3 =

[

x1 x1

x2 x3

]

is also generated by a read-once formula, namely, by x1 ∨ x2x3. �

Our aim is to characterize the positional game forms.

Definition 10.4. Let us consider a game form g and the corresponding matrix M =
M(g). We associate with M two DNFs, representing two Boolean functions f1 = f1(g) =
f1(M) and f2 = f2(g) = f2(M), respectively, by first taking the conjunction of all the
variables in each row (respectively, each column) of M , and then taking the disjunction
of all these conjunctions for all rows (respectively, columns) of M .

We call a game form g (as well as its matrix M) tight if the functions f1 and f2 are
mutually dual.

Example 10.7. Matrix M2 of Example 10.6 generates the functions f1(M2) = x1x3x5 ∨
x2x3x5 ∨ x4x5 and f2(M2) = x1x2x4 ∨ x3x4 ∨ x5. These functions are mutually dual, thus
the game form is tight. Matrix M3 is also tight, because its functions f1(M3) = x1 ∨ x2x3

and f2(M3) = x1x2 ∨ x1x3 are mutually dual. However, M1 is not tight, because its func-
tions f1(M1) = f2(M1) = x1x2 are not mutually dual. �

10.7. RELATED TOPICS AND APPLICATIONS OF READ-ONCE FUNCTIONS553

Remark 10.7. It is proven in [392] that a normal game form (of two players) is Nash-
solvable (i.e., for an arbitrary payoff the obtained game has at least one Nash equilibrium
in pure strategies) if and only if this game form is tight. �

Theorem 10.11. Let f be a read-once function, T = T (f) the parse tree of f interpreted
as an extensive game form, g = g(T) its normal form, M = M(g) the corresponding
matrix, and f1 = f1(M), f2 = f2(M) the functions generated by M . Then f1 = f and
f2 = fd.

Proof. By induction. For a trivial function f the claim is obvious. If f = f ′∨f ′′ then
f1 = f ′1∨f

′′
1 and f2 = f ′2∧f

′′
2 . If f = f ′∧f ′′ then f1 = f ′1∧f

′′
1 and f2 = f ′2∨f

′′
2 . The theorem

follows directly from the definition of strategies. �

Definition 10.5. We call a game form g : S1 × S2 → X (as well as the corresponding
matrix M) rectangular if every outcome x ∈ X occupies a rectangular array in M , that is,
if the following property holds: g(s1

1, s
2
1) = g(s1

2, s
2
2) = x implies g(s1

1, s
2
2) = g(s1

2, s
2
1) = x.

For example, matrices M2 and M3 above are rectangular, while M1 is not.

Theorem 10.12. A game form g and its corresponding matrix M are rectangular if and
only if every prime implicant of f1(M) and every prime implicant of f2(M) have exactly
one variable in common.

Proof. Obviously, any two such prime implicants must have at least one common variable,
because every row and every column in M intersect, i.e., row s1 and column s2 always
have a common outcome x = g(s1, s2). Let us suppose that they have another common
outcome, i.e., there exist strategies s1

i and s2
j such that g(s1, s2

j) = g(s1
i , s

2) = x′ 6= x.
Then, g(s1, s2) = x, thus g is not rectangular.

Conversely, let us assume that g is not rectangular, that is, g(s1
1, s

2
1) = g(s1

2, s
2
2) = x,

while g(s1
1, s

2
2) = x′ 6= x. Then row s1

1 and column s2
2 have at least two outcomes in

common, namely, x and x′. �

Theorem 10.13. (Gurvich [394, 395]). A normal game form g is positional if and only
if it is tight and rectangular.

Proof. The normal form g corresponding to an extensive game form T (f) is tight in view
of Theorem 10.11, and g is rectangular in view of Theorem 10.12 and Theorem 10.6(iv).

554 CHAPTER 10. READ-ONCE FUNCTIONS

Conversely, if g is tight and rectangular, then by definition, f1(g) and f2(g) are dual.
Further, according to Theorem 10.12, every prime implicant of f1(g) and every prime
implicant of f2(g) have exactly one variable in common. Hence, by Theorem 10.6(iv),
f1(g) and f2(g) are read-once, thus g is positional. �

Remark 10.8. In [394] this theorem is generalized for game forms of n players. The
criterion is the same: a game form is positional if and only if it is tight and rectangular.
The proof is based on the cotree decomposition of P4-free graphs; see Sections 10.3, 10.5. �

10.8 Historical notes

We conclude this chapter with a few brief remarks about the history of read-once functions.
It is important to distinguish between

(A) the algorithms to verify read-onceness based on (*) the ∨ − ∧ disjoint decompo-
sition,

and
(B) the criteria of read-onceness based on P4-freeness and the “rectangularity” or

“normality” for the pair f and fd.
In fact, (A) is at least 20 years older than (B). The oldest reference which we know is

by Kuznetsov [552] in 1958 (in the same famous MIAN-51-volume where Trakhtenbrot’s
paper appeared.) Kuznetsov claims that the decomposition (*) is well defined (i.e., it
is unique), and he also says a few words on how to get it; De Morgan’s formulae are
mentioned, too. This implies (A), though read-onceness is not mentioned explicitly in
this paper.

In his 1978 doctoral thesis, Gurvich [394] remarked that the decomposition (*) is a
must for any minimum ∨ − ∧-formula for f in both the monotone and general cases.
However, a bit earlier, Michel Chein has a short paper [173] based on his doctoral thesis
of 1967, which may be the earliest one mentioning “read-once” functions. J. Kuntzmann
(Chein’s thesis advisor) raised the question a few years earlier in the first edition (1965)
of his book “Algèbre de Boole” [549], mentioning a problem called “dédoublement de
variables”, and in the second edition (1968) already cites Chein’s work.

What Chein does (using our notation) is to look at the bipartite graph B(f) =
(P , V, E), where P is the set of prime implicants, V is the set of variables, and edges
represent containment, that is, for all P ∈ P, v ∈ V ,

(P, v) ∈ E ⇐⇒ v ∈ P.

10.9. EXERCISES 555

The reader can easily verify that B(f) is connected if and only if the (Gurvich) graph
G(f) is connected if and only if the (Peer-Pinter) graph H(f) is connected.

Chein’s method is to check which of B(f) or B(fd) is disconnected (failing if both are
connected) and continuing recursively, just like Peer-Pinter do on H(f) and H(fd). The
exponential price is paid for dualizing.

In contrast, as the reader also knows now, the polynomial time algorithm of Golumbic-
Mintz-Rotics acts similarly on G(f) and G(fd), but G(fd) is gotten for free without
dualizing thanks to Gurvich’s theorem, that G(fd) equals the graph complement of (G(f))
paying only an extra lower price to check for normality.

Finally, just to clarify complexities, using our notation: Of course, building B(fd)
involves dualization of f , however, building G(fd) can be done in polynomial time for any
positive Boolean function (i.e., without any dualization)!! The implication is that one can
compute a top-level (unique) read-once decomposition for any positive Boolean function
in polynomial time (see also Ramamurthy’s book [723]).

To summarize, the decomposition (*) is a must in the minimization of f by a ∨ − ∧-
formula and the read-onceness is just an extreme case in such a minimization. Yet, (*)
implies (A) and has been known since 1958, while (B) has been known since 1977 and
rediscovered independently several times thereafter. Dominique de Werra has described
it as, “an additional interesting example of rediscovery by people from the same scientific
community. It shows that the problem has kept its importance and [those involved] have
good taste.”

10.9 Exercises

1. Prove that a Boolean function f for which some variable appears in its positive
form x in one prime implicant and in its negative form x in another prime implicant
cannot be a read-once function.

2. Verify Remark 10.1, namely, if T is a proper dual subimplicant of f , then there
exists a prime implicant of f , say P , such that P ∩ T = ∅.

3. Consider the positive Boolean function

f = x1x2 ∨ x1x5 ∨ x2x3 ∨ x2x4 ∨ x3x4 ∨ x4x5.

(a) Draw the co-occurrence graph G(f). Prove that f is not a read-once function.

(b) Let T = {x1, x4}. What are the sets P0,Px1
,Px4

? Prove that T is a dual
subimplicant of f , by finding a non-covering selection.

556 CHAPTER 10. READ-ONCE FUNCTIONS

(c) Let T ′ = {x3, x4, x5}. What are the sets P ′0,P
′
x3
,P ′x4

,P ′x5
? Prove that T ′ is

not a dual subimplicant of f .

4. Consider the function f = ab∨bc∨cd. Verify that {a, d} is not a dual subimplicant.

5. Verify that the function

f = adg ∨ adh ∨ bdg ∨ bdh ∨ eag ∨ ebg ∨ ecg ∨ eh

in Example 10.2 is not a normal function. Find the collection D of dual prime
implicants of f . Is fd normal?

6. Let f be a positive Boolean function over the variable set {x1, x2, ..., xn}, and let T
be a subset of the variables. Prove the following:

(a) T is a dual prime implicant if and only if P0 = ∅ and there is a non-empty
selection S for T (i.e., Pxi

6= ∅ for every xi ∈ T).

(b) T is a dual super implicant (i.e., D ⊂ T for some dual prime implicant D ∈ D)
if and only if P0 = ∅ and Pxi

= ∅ for some xi ∈ T (i.e., no selection S is possible).

7. Prove that for any graph G, G must be connected if G is disconnected.

8. Give a direct proof (using the dual subimplicant theorem) of the implication (iii)
=⇒ (ii) of Theorem 10.4, namely, if G(f) and G(fd) do not share a common edge
then G(f) and G(fd) are complementary graphs.

9. Using Lemma 10.1, prove that the read-once expression is unique for a read-once
function (up to commutativity of the operations ∨ and ∧).

10. Verify that the function f = abc∨bde∨ceg from Example 10.3 is not normal, though
its three prime implicants correspond to maximal cliques of the co-occurrence graph
G(f), see Figure 10.4. Verify that G(f) contains an induced P4. How many P4’s
does it contain?

11. Consider two functions:

f1 = x1x3x5 ∨ x1x3x6 ∨ x1x4x5 ∨ x1x4x6 ∨ x2x3x5 ∨ x2x3x6 ∨ x2x4x5 ∨ x2x4x6

and

f2 = x1x3x5 ∨ x1x3x6 ∨ x1x4x5 ∨ x1x4x6 ∨ x2x3x5 ∨ x2x3x6 ∨ x2x4x5.

10.9. EXERCISES 557

Verify that they generate the same co-occurrence graph G which is P4-free and that
all prime implicants of f1 and f2 correspond to maximal cliques of G; yet, f1 is
normal, while f2 is not. Find the cotree for G and the read-once expression for f1.

12. Give an example of a pair of functions g and f with same co-occurrence graph
G = G(g) = G(f) which is P4-free and where the number of prime implicants of
g and f are equal; yet, g is normal, and thus read-once, while f is not. (Hint:
Combine non-normal functions that you have seen in this chapter whose graphs are
P4-free.)

13. Prove that for a positive Boolean function given by its complete DNF expression,
it is possible to check normality in O(n3k) time, where n is the number of essential
variables and k is the number of prime implicants of the function. (Hint: use the
results of [504].)

14. Prove Lemma 10.3: Let f be a non-constant read-once function over the variables
N = {x1, x2, . . . , xn}. Suppose that Di is a dual prime implicant containing xi

but not xj, and that Dj is a dual prime implicant containing xj but not xi. Let
Ri,j = (N \ (Di∪Dj))∪{xi, xj}. Then (xi, xj) is an edge in the co-occurrence graph
G(f) if and only if Ri,j contains a prime implicant. (Hint: use (iv) of Theorem 10.6
or see reference [20].)

15. Prove that the recursive definition of cographs based on rules (1), (2), (3) in Sec-
tion 10.4 is equivalent to the alternative definition using rules (1), (2), (3′).

16. Let f be a positive Boolean function over the variables N = {x1, x2, . . . , xn}, and
let U ⊆ N .

(a) Prove that the following greedy algorithm Find-PI-In(U) finds a prime impli-
cant P ⊆ U of f , if one exists, and can be implemented to run in O(n) time using
|U | membership queries. (We denote by XU the characteristic vector of U where
xU

i = 1 for xi ∈ U , and xU
i = 0 otherwise.)

Algorithm Find-PI-In(U)

Step 1: Verify that f(XU) = 1.
Otherwise, exit with no solution since U contains no prime implicant.

Step 2: Set S ← U .

Step 3: For all xi ∈ U , do
if f(XS\{xi}) = 1 then S ← S \ {xi}
end-do

558 CHAPTER 10. READ-ONCE FUNCTIONS

Step 4: Set P ← S and output P .

(b) Write an analogous dual Algorithm Find-DualPI-In(U) to find a dual prime
implicant D ⊆ U of f , if one exists.

17. The next three exercises are due to [20].

Prove the following: Let f be a non-constant read-once function, and let Y be a
non-empty subset of its variables. Then Y is the set of essential variables of f if
and only if for every variable xi ∈ Y , xi is contained in a prime implicant of f that
is a subset of Y , and xi is contained in a dual prime implicant of f that is a subset
of Y .

18. Let f be a read-once function over the set of variables N = {x1, x2, . . . , xn}. Prove
the following: If S is a prime implicant of f containing the variable xi, then (N \
S) ∪ {xi} contains a dual prime implicant of f , and any such dual prime implicant
contains xi. Dually, if T is a dual prime implicant of f containing the variable xi,
then (N \ T) ∪ {xi} contains a prime implicant of f , and any such prime implicant
contains xi.

19. Let f be a read-once function over the set of variables N = {x1, x2, . . . , xn}. Using
Exercises 16, 17 and 18, prove that the following algorithm finds the set Y of essential
variables and can be implemented to run in O(n2) time using O(n2) membership
queries. In the process, for each variable xi in Y , it generates a prime implicant P [i]
and a dual prime implicant D[i] containing xi.

Algorithm Find-Essential-Variables

Step 1: Set P [i] ← D[i] ← ∅ for i = 1, . . . , n.

Step 2: Set W ← P ← Find-PI-In(N), and
for each xj ∈ P , set P [j] ← P .

Step 3: While there exists xi ∈ N such that exactly one of P [i] and D[i] is ∅, do

(3a:) if D[i] = ∅, then set D ← Find-DualPI-In((N \ P [i]) ∪ {xi}), and
for each xj ∈ D, set D[j] ← D, and set W ← W ∪D.

(3b:) if P [i] = ∅, then set P ← Find-PI-In((N \D[i]) ∪ {xi}), and
for each xj ∈ P , set P [j] ← P , and set W ← W ∪ P .
end-do

Step 4: Set Y ← W and output Y .

10.9. EXERCISES 559

20. (From Lisa Hellerstein.) Consider the function

f1 = x1 ∨ x2 ∨ ... ∨ xn

and the class of functions F = {fA}, where A is an element in {0, 1}n having at
least two 1’s, and

fA(X) = 1 ⇐⇒ f1(X) = 1 and X 6= A.

(a) Prove that the functions fA are not monotone.

(b) Prove that determining that a function is equal to f1 and not some fA requires
querying all possible A’s, and there are Θ(2n) of them.

21. Prove directly that the normal form of any extensive game form is rectangular. In
other words, if two pairs of strategies (s1

1, s
2
1) and (s1

2, s
2
2) result in the same play p,

that is, p(s1
1, s

2
1) = p(s1

2, s
2
2) = p, then (s1

1, s
2
2) and (s1

2, s
2
1) also result in the same

play, that is, p(s1
1, s

2
2) = p(s1

2, s
2
1) = p.

22. Verify that the following two game forms are tight:

M4 =









x1 x2 x1 x2

x3 x4 x4 x3

x1 x4 x1 x5

x3 x2 x6 x2









,

M5 =





x1 x1 x2

x1 x1 x3

x2 x4 x2



 .

Questions for thought

23. To what extent is Lemma 10.1 true for all expressions, that is, not just the read-once
formula and the DNF formula of prime implicants?

24. The polynomial time complexity given in Theorem 10.5 can (almost certainly) be
improved by a more careful choice of data structures. In this direction, what is
the complexity of calculating P0 and Pxi

for all xi? Consider using bit vectors to
represent sets of variables.

560 CHAPTER 10. READ-ONCE FUNCTIONS

25. What can be said about the complexity of recognizing read-once functions if the
input formula is not a DNF, but some other type of representation such as a BDD
or an arbitrary Boolean expression? In such a case, we might have to pay a high
price to convert the formula into a DNF or CNF and use the GMR method of
Section 10.5. When is there an efficient alternative way to build the co-occurrence
graph G(f) directly from a representation of f which is different from the DNF
or CNF expression? What assumptions must be made regarding f? When can
normality also be tested?

Lisa Hellerstein (private communication) has pointed out that if ψ is a non-monotone
DNF expression, the read-once recognition problem is coNP-complete. How does
this impact the answer?

26. Give a counterexample to show that the statement in Exercise 17 may fail when f

is a positive Boolean function, but f is not read-once. Show that for an arbitrary
positive Boolean function f , identifying the set of essential variables may require an
exponential number of calls on a membership oracle.

27. What would happen if we attempted to apply the read-once oracle learning method
to a positive function f which was not read-once? In other words, in the building of
the co-occurrence graph (Step 1), how did we rely upon the read-once assumption?
Would the oracle fail, in which case we would know that f is not read-once, or
would it produce some other graph? What graph would we get? When would it
still yield the correct co-occurrence graph G(f)? If so, we can easily test whether it
is a cograph, but how could we test whether the function is normal? For example,
consider what would happen for the functions f1 and f2 of Section 10.1. Could the
oracle generate all prime implicants? What would be the complexity?

28. The two game forms M4 and M5 in Exercise 22 represent the normal form of some
extensive games on graphs which have no terminal positions and their cycles are the
outcomes of the game. Find two graphs which generate M4 and M5.

