Compiler Auto-tuning:
Automatic search of optimal pass sequences / parameters by ML

""""""""""""" s, T TTTTTTITTI T m T m T T TTTTTTTTTTTTT T T T T Tk
frontend v middle-end \ backend A
| |
|
|
- lic
(o) -
clang | LLVM IR : S LILVWM IR (static
(high-level optimizations) Compller)
! (arch-independent**, (arch-independent**, P
N language-dependent) N language-independent**) /,"\ (arch-dependent)

Nikolay Efanov, PhD, associate professor at MIPT
Aleksey Otrashchenko, student at MIPT

*Clang/ LLVM
** There are some nuances

Compiler auto-tuning:

Compilers implements a lot of different transformation passes
e LLVM:~160
o GCC:~250
e Atall, there about ~500 different types of passes
e Some passes are parametric (“loop-unroll”, etc.)

Pass sequences, which are “optimal in mean” for different optimization targets (size, perf, calculation accuracy),
are grouped into “optimization levels”:

e 00,0l

e 2 (usually used in industry)
e O3

e Os,0Oz...

Passes have different granularity levels, and require different program representations

Some programs (mostly all, in fact) can be better optimized, than -O*, if to tune the passes and their parameters
more accurately.
The sequence of passes also oftenly important (AB !=BA).

Problems and combinatorial estimations of search spaces

e Phase-ordering problem: Due to the permutations, the search space size

e Choosing the right set of phases:

(1) Estimates the search space size for binary selection of phases. For
example, if n = 9 then |Qgelection] = 22 = 512. Moreover, if taking into
account parameterization of phases and phases repetition (some of phases
can be applied more than 1 time), the extended estimation:

’
n

|Qsetection_extended| = H{O 1,..m;}, where (2)

=1

m; +1 is the total number of parameters’ values for j —th phase, j € [1,7n/]
, and n’ is number of phases to apply.

|Qs«[t:(:[i()n| = {0 1}” (1) .

of this problem growth as factorial (3):

|Qphuscs| =n! (3)

Moreover, taking into account possible repetitions of phases and variability
of sequence length, this estimation becomes (4):

l
[Qp/zus(fs_(f;rlr:mltid| = Z ni. where (—l)

1=0

[is the max length of phases sequence vector.

Thus, there is, for example, 3905 variants for /=5

Note 1:

Methods for automation of phases choosing, phase-ordering and phase parameters picking required

Note 2:

There is no “ideal” order of passes applying in common case. Pass A transforms code in that it can corrupt the
optimizations, which could be successfully performed by the pass B next to the A.

Compiler auto-tuning: passes reordering

For function-level granularity

| Objectveuncton - | ' For whole program p granularity i AT DR :
'\ [_constans] . size(C(s,p)) Art(Csp)T.02)<e| min, rae El szze(C(si, f l)) Art(C(s, f).T,02) <t ” mmi

. Different solution approaches: '
EE EEEE

Prog. Features at a Baseline ~ OPL. Passes

+ Much resistance to local min

H H I intermedite i
Speedup sequence
. Prediction o Speedup
MDP* (POMDP) Model Classification Pf;ld';t'f"
ode
Final Opt={A, B, B, C} -
\ J\
f _\ﬁ) ;
Prog. Features Opt. Passes H
. 1
1. lterative (n passes are applied, predict n+1) 2. Full-sequence prediction !
+ Models can be relative simple - Models are more complicated |
- One characterization per step - Requires accurate program representations !
i
1
1

:
1
1
|
1
| - Local min convergency risks + Requires only one characterization on inference
1
1
1
1
1
1
1

Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using Optimization Sub-Sequences and Machine
Learning. ACM Trans. Archit. Code Optim. 14, 3, Article 29 (September 2017), 28 pages. https://doi.org/10.1145/3124452

___ F

Support by compiler
o Switching passes on / off (in fixed order)
o Pass-reordering
o Infrastructure for working with IR, representations, optimizer, etc

Optimal sequences search
o Optimization space exploration
o Benchmarks preparation & analysis
o Algorithm choosing
m EARL
m Supervised learning, collaborative filtering

Code characterization

o By explicit (expert) features-selection
o QGraph-structured representation analysis (flow-aware)
o ByML

Specialization for target platform
o Parameterized passes, parameters choosing
o Prior knowledge about hardware features

Iterative compilation [1]

Sequential code re-compilation with different pass sequences for choosing the best (k-best)

Metrics
sroa, =
: dse,) of]
4O— sccp’ ————— % o
Input Optimizer Output Build & Run

+ Quaranteed best results via brute-force
+ Very simple approach

- Monstrous overhead / time consumption
- No knowledge transfer between experiments

Bodin, Francgois & Kisuki, Toru & Knijnenburg, Peter & Boyle, Mike & Rohou, Erven. (2000). lterative compilation in a non-linear
optimisation space. Workshop on Profile and Feedback-Directed Compilation.

Adaptive compilation (“Profiling guided optimization”) 2]

Profiling of instrumented program and applying of the best passes for collected profile

Instrument phase

— [0 wmse oo -
Sougce code Instrumented
ase binary
+ Relatively simple approach —
+ Approbated in industry (Firefox Colect profi ciia phase C Profing)
. \ dat N
Mozilla, etc) B =
i
~ |+
- No knOWICdge transfer Scenarios with lnstrumemeN Output
- Best results for certain profiles (and . piney
may be worse for another scenarios)
Optimize phase
— -
Source code -
Optimized
base binary
(~ Proﬂllng \)
(/ data D

_

2. https://johnnysswlab.com/tune-your-programs-speed-with-profile-guided-optimizations/ T

Modern approaches with ML

+ Knowledge transfer

+ Generalization

- Quite complex

- Require novel code characterization methods, benchmarks preparation

Measurement
Collection

N Optimization 47/ Compiler
| Design of

Experiment | Versions

Binaries

Training Objective Metric(s)
Set
< Machine
—P)) P Learning
——— Feature Dimension Algorithm Predictive
Test f--D>| Extraction }-cevee-n P> Reduction }ecceccncccccmmcanacacaaci... Model
Set b Program Feature Predi
| ! edicted
Characterizations Vectors | Outcome(s)

. Train
. Inference

Ashouri, Amir H. & Killian, William & Cavazos, John & Palermo, Gianluca & Silvano, Cristina. (2018). A Survey on Compiler Autotuning using Machine Learning. ACM Computing Surveys. 51. 96:1-. 10.1145/3197978.

Mo

1

Ashouri, Amir H. & Killian, William & Cavazos, John & Palermo, Gianluca & Silvano, Cristina. (2018). A Survey on Compiler Autotuning using Machine Learning. ACM Computing Surveys. 51. 96:1-. 10.1145/3197978.

__

I} Machine learning system A} i
L— : I metrics, .
Decision making system / Features 1 owards Metrics
I . n'd : Y
Clang : Actions | Observables = : %
T DN Tl ’ oy
opt. passes seq. compile & run
* 6 *h LLUM IR pt. p q opt p Tlartg];cet
atrorm
. Infrastructure P
g Optimization Compiler Measurement
> Design of Collection
Training Experiment [Versions P Objective Metric(s)
Set
< Machine
)) P Learning
— Feature Dimension Algorithm Predictive
Test --p>| Extraction }e-cee--- P> Reduction }ecceccncccccmmcanacacaaci... Model
Set b Program Feature Predi
| ! edicted
Characterizations Vectors | Outcome(s)

. Train
. Inference

YckopeHue moucka u Tpanchepa sSHaHUH

HreparruBHas KOMOWIAIMS 3a7105)KUJIa OCHOBY aBTOMAaTU3UpoBaHHOTO noaxoaa [Bodin u ap., 1998-2000] u onpenenuia
JaTbHEHIINI BEKTOP €ro pa3BuTHsA. 3a ~25 JIeT yCrexXu Cleayolue:

[Tocnennue necaTuneTus yCKOpEeHUe MOUCKa OCYIIECTBISIIOCh B OCHOBHOM 3a CUET MoaXooB ¢ ['A u
croxactuueckuii mouck [Tagtekin u np., 2021], a Taxxe komOuHUpoBaHueM ['A ¢ oOyueHuem ¢ yuureneM [Agakov
et al, 2006], etc.

B nocneanue 5-10 net Havaiu npuMeHATh 00y4eHHE C MOAKPEIUICHUEM, TPAKTUYECKUE PE3YIbTaThl
JEMOHCTPUPYIOT CYHIECTBEHHO O0siee OBICTPYIO CXOAMMOCTD K pe3yibraraM, kak y ['A. [Ipu 3Tom Bo3HUKaeT
BO3MOXKHOCTbh TpaHc(epa 3HaHU

3aiaH TpeH] Ha MOCTPOEHUE CIOKHBIX METOAOB XapaKTepHU3aluH, B T.4. TOCPEICTBOM 00yUEHHUS MPEACTABICHUM
Pazpabotansl penienus, ucnoib3yroiue nadopmanuio o hardware mist myumieit ontumuzaiuu (NeuroVectorizer)
Uccnenoparenbckue pabOThI, Kak MPaBUIIO, HE CBS3BIBAIOTCS CO CIOKHBIMU KPUTEPUSIMU ONTUMU3ALINH
(omHOKpUTEpHUAIbHAS C OTPAaHUYECHUSIMU, MHOTOKpUTEpHUaibHas). B ocHoBHOM, 31O mobena Hax -O3 / -Os /-Oz
Hama rpynna, Hao60poT, UCIIONIb3YET HEllETIeBbIe XapaKTEPUCTUKU TPOrPAMM KaK OTpaHUYEHUS

Periienus B 1aHHOW TeXHUYECKON 00JaCTH KpailHEe OBICTPO YCTapPEBAIOT

Bodin, Frangois & Kisuki, Toru & Knijnenburg, Peter & Boyle, Mike & Rohou, Erven. (2000). lterative compilation in a non-linear optimisation space. Workshop on Profile and
Feedback-Directed Compilation.

Tagtekin, B., Hoke, B., Sezer, M. K., & Oztiirk, M. U. (2021, August). FOGA: Flag Optimization with Genetic Algorithm. In 2021 International Conference on INnovations in Intelligent
SysTems and Applications (INISTA) (pp. 1-6). IEEE.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning to focus iterative optimization,” in
International Symposium on Code Generation and Optimization (CGO’06). IEEE, 2006, pp. 11—pp.

Appendix #1

Improvement over -03

https://arxiv.org/pdf/2003.00671.pdf

Samples / Program

Appendix #2: Proof-of-concept with heuristic search, LLVM [Efanov, 2023]

Decision making system / Features Metrics
Clang | Actions | Observables = 2|
1 2 5
*o *h LLUM IR Opt. passes seq. Opt Compile & run . Target
’ platform
Results for CBench .TEXT size reduction without runtime degradation:
CE T T U — Method: heuristic search (least from positives per-step);
psm_ BT Iterations num.:100 lterations;
:z‘i,:zﬂsn e Episode len.: 15;
= e Patience: 5;
— e Runtime eval: 10 times, mean;
= e Env: LLVM
o e Benchmark: CBench-v1;
- e Actions: Oz_extra;
o et Target: size reduction under const performance degradation
Challenges:
- Off-line full sequence prediction (currently solved, can be improved)
- Static code characterization (flow-aware & scalable) methods construction & integration
- Convergence speed-up by subsequences extracted from ODG
- Optimal parameters prediction for parameterized passes (loop unroll, vectorize, inline, etc)
- ML methods improvement (achieved ~11% max size reduction on CBench with AC RL)

Place for slides from En&T-2023 Conference...

Code characterization

Code characterization

e Static
o Aggregated features (for ex, extracted by NLP [3] models or collected from IR by values of instructions,

BBs, functions, phi-nodes counters, etc [1,4-5].)
o Graph-structured (CFG, DFG, CallGraph, etc [4])
o Mixed

e Dynamic
o Arch-dependent (perf counters, etc) [2-4]
o Arch-independent (for ex, number of function calls)

e Hybrid
o Collect as much as ...

1. Q. Huang, et al., "AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning," in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, USA, 2019 pp. 308-308.
2. POSET-RL: https://arxiv.org/abs/2208.04238

3. [Wang, H, Tang, Z, Zhang, C et al]. (4 more authors) (2022) Automating Reinforcement Learning Architecture Design for Code Optimization. In: CC 2022: Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction. The 31st ACM
SIGPLAN International Conference on Compiler Construction (CC '22), 02-03 Apr 2022.

4. S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant. 2020. IR2VEC: LLVM IR Based Scalable Program Embeddings. ACM Trans. Archit. Code Optim. 17, 4, Article 32 (December 2020), 27
pages.

5. Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and Hugh Leather. 2022. CompilerGym: robust, performant compiler optimization environments for Al
research. In Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization (CGO '22). IEEE Press, 92—105.

Code characterization

e Static
o Aggregated features (for ex, extracted by NLP [3] models or collected from IR by values of instructions,
BBs, functions, phi-nodes counters, etc [1,4-5].)
o Graph-structured (CFG, DFG, CallGraph, etc [4])
o Mixed

e Dynamic
o Arch-dependent (perf counters, etc) [2-4]
o Arch-independent (for ex, number of function calls)

ﬁ ote:

e Hecmotps Ha “packpydeHHOCTh”, Mmogenu Ha ocHoBe NLP (code2vec, CodeBERT, etc) npumeHsitoTcs He Tak 4acTo,
4TO 00YCJIOBIIEHO MHOTUMU (haKTOpaMU: HEUYBCTBUTEIHLHOCTHIO K MMOTOKOBOM MH(OPMAIINH, TPYIHOCTHIO
OTpe/IeNIeHNs] CEMAaHTUKH (U, KaK Pe3yJIbTaT, HEBO3MOKHOCThIO 00eCTIedeHHs] HEKOTOPBIX CBOMCTB MPEACTABICHUS).
Mopnenu, 11 KOTOPBIX ONEpallMOHHAs CEMAHTHKA OTPEIETIeHa, OTIEPUPYIOT 00JIee CIOKHBIMH CTPYKTYpPaMH
KOHTEKCTa, YeM CKHUII-TpamMma U3 nocliefoBareiabHocTh cioB. (“Kop -- 310 He TekcT”

e Pemenus Ha ocHoBe LLM mnosinsitorcs (mepBasi pabota -- ceHTs10pb 2023 1.). KauecTBo pe3yabTaroB -- MOKa 4TO He
BbICOKOE (3% U1 yMEHbIIEHNS KOJMYECTBAa HHCTPYKIM O6e3 orpanndenuii Ha LLVM).
https://arxiv.org/pdf/2309.07062.pdf

/

https://arxiv.org/pdf/2309.07062.pdf

Code characterization: from experience view

e NLP-based models are inaccurate (program is not a token sequence, relations between
entities should be extracted) [1]. Relations and semantics matters [4,11].
o Thus, graph-based characterization methods required (or another kind, which take into
account the relations on instructions, variables, arguments, types, etc)
o Theoretically, inst2vec should give the best results in comparison with another,
Because of taking into account graph-structure of program flows. But it is not enough.

e Manually-crafted features (intsr.number, bb sizes, trip-counts) are specialization (suitable for
certain applications rather than for general purpose)
o Question of automation is opened -- defaultly, need experts

e Dimensionality reduction required
o In case IR2Vec, the inference sometimes taken in minutes for relative big programs (for
~600 lines in TU)
o Sparsity reduction of feature space will lead, at least, to convergence speed gain
e Models
o Should keep of semantics (demonstrated [11], that CFG,DFG,Call, Type graph-based
methods are relatively good in this criteria).
o Should be extensible to represent static & dynamic features
e The first model with LLMs [https://arxiv.org/pdf/2309.07062.pdf] shows some minor results for
unconstrained size reduction.

https://arxiv.org/pdf/2309.07062.pdf

Code characterization: AutoPhase repr. Vs InstCount

AutoPhase

Totallnsts

TotalMeminst

testUnary

const32Bit

NumLoadInst

NumEdges

NumStorelnst

TotalBlocks

BBNoPhi

NumCallinst

NumBrinst

BranchCount

BlockLow

const64Bit

numConstOnes

NumBitCastinst

numConstZeroes

onePred

oneSuccessor

567

340

244

133

127

95

91

73

73

66

66

66

66

65

59

56

52

45

40

InstrCount

TotallnstsCount

LoadCount

StoreCount

TotalBlocksCount

CallCount

BrCount

BitCastCount

AllocaCount

ICmpCount

GetElementPtrCount

TotalFuncsCount

SExtCount

AddCount

AndCount

TruncCount

AShrCount

SubCount

567

127

91

73

66

66

56

37

29

19

14

13

13

. Accurate choosing of representation
. leads to:
.- Convergence speedup

- Results improvement

c
£ 1.00 e N AN\ WY
s ' gAY
5 B e U Vo vt A
g o, 0 4
2 0.75 1 ¢
A T e -
N ——
@ 0.50
8
Y 0254 — Autophasew. hist InstCount w. hist
] -== Autophase InstCount
2 T

le+03 le+04 le+05

#. training episodes (log)

In both cases stronger performance is achieved when coupling the
program representation with a histogram of the agent’s previous
actions. The Autophase representation encodes more attributes of
the structure of programs than InstCount and achieves greater
performance

XapaKTepusau,vm kopa: Inst2vec (201 8) “Statements that occur in the same contexts tend to have similar semantics.”

%struct.X = type { i32 }

double thres = 5.0;
%3 = getelementptr inbounds %struct.X, :> %id = getelementptr inbounds {i32},

if (x

x += 1.0; /\

%struct.X* %0, i64 0, i32 0 {i32)* %id, i64 %int, i32 %int

(a) IR Statement (b) inst2vec-normalized
(a) Source code 20 @
%cmp = femp olt double %x, 5.8 . -@:
e A neE Similarity To define similarity, one first needs to define the semantics of a statement. We draw the

%2 = fmul double Xy, Xy definition of semantics from Operational Semantics in programming language theory, which refers
to the effects (e.g., preconditions, postconditions) of each computational step in a given program.
In this paper, we specifically assume that each statement modifies the system state in a certain way
%4 = phi double (e.g., adds two numbers) and consumes resources (e.g.. uses registers and floating-point units). It

g:@\é =
12,031, [X20E) %AFTER
%5 = fadd double %4, 1.0 follows that semantic similarity can be defined by two statements consuming the same resources or

(b) LLVM IR (c) Dataflow basic blocks (d) Contextual Flow Graph modifying the system state in a similar way. Using this definition, two versions of the same algorithm
with different variable types would be synonymous.

Table 2: Analogy and test scores for inst2vec

C/C++ f 3 Context Context Syntactic Analogies Semantic Analogics Semantic Distance Test
type Size =
RNN $ Anti-Virus Types Options Conversions Data Structures
FORTRAN :1” Contextual Malicious Code Detection CFG 1 0(0%) 1(1.89%) 1(0.07%) 0(0%)
2 1(0.18% 1(1.89%) 00%) 00%
P\/thOI’] g Flow Graph RNN > IDE 3 'm(m: 1 :1.w';| 4(027%) Ulu"'j
Ca (XFG) Guided Programming DFG 1 53(946%) 12(22.64%) 4(50.00%)
Java [0} ENEL > 2 71(1268%) 12(22.64%) 3(37.50 %)
= g — 3 67(2232%) 18(33.96%) 4(50.00 %)
CUDA o Code Optimization Compiler XFG | 101 (1804%) 1302453%) 100(6.63%) 3(37.50%) 60.98 %
i 2 226(40.36 %) 45(84.91%) 134 (8.89 %) 7 (87.50 %) 79.02%
OpenCL inst2vec RNN Hardware Mapping 3 125(2232%) 24(4528%) 48 (3.18%) 7(87.50 %) 62.56%
|
Source SSA Representation Neural Code High-Level Tasks Table 3: Algorithm classification test accuracy
Code (LLVM |R) COmprehension Metric Surfulcc Features !4‘)] RNN [49] TBCNN [49] ins2vec
(RBF SVM + Bag-of-Trees)
Test Accuracy [%] 88.2 84.8 94.0 94.83

1. Read LLVM IR statements once, storing function names and return statements.

2. Second pass over the statements, adding nodes and edges according to the following rule-set:

(a) Data dependencies within a basic block are connected. Note: that's way data-flow is taken into account

(b) Inter-block dependencies (e.g., ¢-expressions) are both connected directly and through the label identifier (statement-less edges).

(c) Identifiers without a dataflow parent are connected to their root (label or program root).

(d) Calls to external code (e.g., libraries, frameworks) are divided into two categories: statically-(connections) and dynamically-linked (stubs).

3. Achieved XFG becomes a context for inst2vec statement (ynporiéunsiii LLVM IR). Then, skip-gram learning is used to learn the embedding (XFG as

sehab&ARub.com/spclince

Code characterization: IR2Vec (2020)

Seed dictionary (pre-trained) for LLVM IR entities + combination rules

Lets consider triplets < h,r,t >, where entities h,? have relation r of one of
three types:

1. TypeOf - relation between instruction code and current instruction type
2. NextInst — relation between current and next instruction code

3. Arg; — between instruction code and its ¢ — th operand

(b) Learning Seed Embeddings with TransE

[nl [rl 3] (¢) Seed Embedding Vocabul
(eeo0e|i(0eee|x(000e “ “ N
| weee (eeee
IntegerTy N
(o) (Sees)

VaE @ese)
%a.addr = alloca 132, align 4

store 132 %a, 32¢ a.adds, align 4 —> W, ((8888)) + W,(

store 32 %, i32% b.addr, align 4 W, (20 + (wsee))
40 = losd 432, £32¢ an.adde, align 4
01 = losd 132, 320 Wb.adde, align 4

(ret, "TypeOf", IntegerTy) $add = add nsw 132 %0, $1

(ret,"Argy’, VAR) < retizeeaa— o W,(@ese) + W(@ese) + W,(0)

(a) Mapping of LLVM IR to (h,r)triplets (d) Formation of Instruction Vector (Symbolic)

by =y ¥ .
(a) Types (b) Arithmetic Operations Vs. Argu-
ments
oatops vs ItOps vs.
e
= ey,
3] g Py
- -
- o
(d) Arithmetic Vs. Casting Operations (¢) Pointer Vs. Arithmetic Operations (f) Terminator Vs. Logical Vs. Arith-

metic Operations

https://arxiv.org/abs/1909.06228

Lets consider the entities, which define the instruction I: code OY), i — th
argument A\ i € [0,n], type T) with vector representations [0()], [A")], [T(1).

Then, the instruction < O, 1), A(()”, - A > can be represented as vector :

n

Wo[0D] + W TD] + W (3 [A")), where (1)
i=0

W, > W > W, — weight coefficients, learned by TransE method.

Let RDy,..,RD,, are reaching-definitions of some argument Aﬁ-” and its
vector representations are [RDy), .., [RD,,|. Then, AJ(-I) can be represented as:

m
4571 = [RD;"])
Note: that's way data-flow is taken into account
Next, for each basic block BB; representation can be calculated as sum of
live instructions Ly, .., LI} representations:

k
[BB;] = [LI] (3)

i=0
Finally, function F' can be represented as sum of its basic blocks BBy, .., BB,

representations:
b

[F] =Y (BB (4)
Note: that's way control-flow is taken into account
In the same way, the vector of whole translation unit P can be calculated as
sum of vector representation of functions F, .., F:

f
[Pl=_[F] (5)
i=0
Thus, hierarchical representation method, which can map instructions, types,
arguments and relations between them, basic blocks, functions and whole program
is constructed.

Code characterization: IR2Vec (2020)

Seed dictionary (pre-trained) for LLVM IR entities + combination rules

Lets consider triplets < h,r,t >, where entities h,t have relation r of one of
three types:

[

. TypeOf - relation between instruction code and current instruction type

no

. NextInst - relation between current and next instruction code
3. Arg; — between instruction code and its i — th operand

(b) Learning Seed Embeddings with TransE

[nD Irl [tD

(c) Seed Embedding Vocabulary

(eese
(seee)
IntegerTy

(esee

8b.addr = alloca i32, align 4

~<—— store i32 %a, 132* ta.addr, align ¢ —> W ((e8e9)) + W ((e8s0)) +
store i32 b, i32* $b.addr, align 4 W,(+ (eese))
80 = load 132, 132+ %a.addr, align 4

81 = load i32, i32+ %b.addr, align 4

(ret, "TypeOf", IntegerTy)

Sadd = add naw 132 30, 41
(ret, "Arg,", VAR) - metazaa— o W,(@sew) + W,(@sse) + W,(c=m)

(a) Mapping of LLVM IR to (h,r)triplets (d) Formation of Instruction Vector (Symbolic)

,,,,,,, loat0ps va. Args vs. ntOps ogicalOps vs. Args
T = L = o[-
ourslem * M w "

Lets consider the entities, which define the instruction I: code O, i — th
argument AE”. i € [0,n], type T with vector representations [O/)], [AE”]. [T)].
Then, the instruction < O, 7 A A > can be represented as vector :

Wo[0D] + W TD] + W (3 [A")), where (1)
i=0

W, > W > W, — weight coefficients, learned by TransE method.

Let RDy,..,RD,, are reaching-definitions of some argument A;” and its
vector representations are [RDy), ... [RD,,]. Then, .45-” can be represented as:
m
[A"1= " [RD("])

Note: that's way data-flow is taken into account
Next, for each basic block BB; representation can be calculated as sum of
live instructions LIy, .., LI} representations:

[BE;] = Y [L1] 3)

Finally, function F' can be represented as sum of its basic blocks BBy, .., BB,
representations:

e Data-flow sensitive

Quite strange but practically appliable

® Questions to CFG sensitivity (“+” commutativity)

e Questions to original implementation (NextlInst is not used)...

e Previously approved by LLVM-community for MLGO integration
°

https://arxiv.org/abs/1909.06228

is constructed.

Code characterization: IR2Vec [4,8] : Experiments & Alternatives
TransE pre-trained LLVM IR entities+manual rules

In [Zavodskikh et al, 2022] Zavodskikh R.K. (my PhD student) have experimentally checked the ability of
IR2Vec to save statically estimated reuse-distance between accessed array elements for chosen types of
loops. It is determined that the method reflects the instrumentation data in representation vectors, and results
of estimation are correlated with Linux Perf measurements. Thus, it demonstrates the ability of IR2Vec to
represent control-flow and data-flow accurately enough.

_ /
| N

Nevertheless, there are a list of drawbacks of the method detected:
-- BBs are not ordered according to the original CFG order.
-- Original implementation of the method not takes into account Nextlnst relations (unlike in the method
description [4].
Thus, the implementation should be improved.

\ /

ﬁlso, there are alternative methods of flow-aware program features extraction recently publishe(h
(https://ieeexplore.ieee.org/document/9275317, https://chriscummins.cc/2017/deep-learning-in-compilers),
mostly based on graph-structures deep learning via message-passing graph neural networks. But this
solutions seems more hard to implement (except PrograML [11], which already integrated to CompilerGym),
re-train and use, in contrast with IR2Vec, in which the basic relations on IR entities are extracted manually
and pre-trained as a seeds for representation of compound entities as superpositions of the constituents

wectors. j

https://ieeexplore.ieee.org/document/9275317
https://chriscummins.cc/2017/deep-learning-in-compilers

Code characterization: ProGraML (2021)

Graph-structured, flow-aware, type-aware representation, forwarded to MP-GNN

Itisn't a vector of numbers Learning with ProGraML: GGNNs

Itisn't a sequence of tokens

Feature vectors are easy to fool
(e.g. insert dead code).

Sequential representations fail on

non-linear relations, long-range deps. Message Passing

)

MO €)= Wegpeteony (R ©ewn)) + by
void ACint a) Il A\
int b = initQ); weight matrices f

6 typed or Position gating fo differentiate
(forwards backwards) (control data.call)

control branches and operand order

v 1"
(\J\ >c: w('a x 1000 lines o
N eadout Hea
© @) recurn b~ R (KT, K9) = o (F(KT, K9)) - o(T)
e
. Nodes represent types,
Add graph vertices for [externall }@ Edges arginstang:;.
constants (diamonds) and Nk
. switcl
variables (oblongs). Types are composable.
1 Edge position per field.
Edges are data-flow. N ’phi ——
char a; * ¥
Edge position attribute for -> char b; var

»
operand order. struct s* ¢;

3

Note: Control-Flow

Note: Data-Flow

Deep Data Flow F1 scores
inst2vec CDFG ProGraML
Use vertex labels as embedding keys [[EHN- o [+ @ 2 e
Trivial forwards control-flow ’ 0.012 0.998 0.998
N . .. E.g. dead code elimination
Derive vocab from set of unique vertex labels on training graphs.
Dominance
Separate type/instruction nodes leads to compact vocab, £ ol fow ’ LCE G 00
excellent coverage on unseen programs compared to prior approaches:
Data Dependencies
Vocabulary size Test coverage Forwards data-flow ’ = = 0.997
E.g. instruction selection
inst2vec [12] 8,565 34.0%
CDFG [14] 75 47.5% . .
" Live-out Variabl
PROGRAML 2,230 98.3% *without types .. ot powuod ’ . 0.937
g.register alocation
inst2vec: combined instruction+operands g:f:::r::‘:;:: oo
CDFG: uses only instructions for vocab, ignores data [einiclon/cpaanl st C N ' lﬁ goco B e
E.g. GCS Elimination —

Embedding construction approach:

inst2vec for nodes-statements
° Relations learning: MP-GNN
e In some sense, this is mixed approach
J [e'xternall . L -
val~ val (@ar :_
switeh | ¢= .
) N\, vai ‘ :
ke :
add |
>
- ca‘ll :
ac'!d | :
] cavll var va;' | :
Ea o L
R o

Note: CallGraph and Typelnfo*

1. Algorithm Classification

C Program - N

=l

1.35x improvement over
state-of-art

* There some type elision in LLVM IR

ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations (2021) https://chriscummins.cc/pub/2021-icml.pdf

Learn by Graph NN

2. Heterogeneous Device Mapping
e
OpenCL N\

Program

. &
[ory] [Corv]

1.20x improvement over
state-of-art

Code characterization: mixed static methods (static features + CFG / VFG)

GCC GIMPLE-SSA embedding [Otrashchenko, Akimov, Efanov, 2023]

* GCC IR is characterised using

autophase characterisation, control

and value flow graphs

* Autophase characterisation consits

of information about IR, available
immediately during compilation

* The embedding from control flow
graph and value flow graph are
acquired as shown on the picture

Whole embedding:

Autophase Embedding from Embedding from
embedding control flow graph value flow graph
/ Length 47 \‘ Length 50 (K = 25) Length 50 (K = 25)
20 0 o 10 4 —1.09| 297 I |0.17 ‘—0.89 072221 .. |163|201

Expertly chosen cnts DFG / VFG embeddings

GIMPLE-SSA Matpuua
Marpuua BOCTUHUMOCTH
_vH i
CMexHoCTH A M = 3L (BA)
o[1]ofofo o1 [ospedos
olo|1]o1 0|01 [osred
rpad ofofolilo] T——> [ofoo]i]os
ojojojojfa olo|o|o[1
919)00 0 olofofo]o

M=uUsy*
Dgye = U[:,0:K] - VS[0: K]
Dyse = V[:,0:K] - VS[0: K]

/

@&*@

DSTC Ddst

[-0.84(-0.82(0.02 ojo|o
| (PCA(Dg,c), PCA(DdS,))| 11.210.251-0.25| (0.29/-0.82(0.02
I2A18[~1A25]-0.9312.261—0.9]-135' <] 1-0.64/0.31)0.72 0.67[-0.40[-0.33
-0.46(0.41 |-0.36) 10.76}-0.01{0.73
0 0 0 -1.29]0.41 -0.26)

Graph to embedding pipeline

PN

engineering ¥

&telecoms 4

U1 /4

RL/GA Approach: GCC PHO (external ppt)

Appendix 1: Proof-of-concept with heuristic rearch

Decision making system Features Metrics
. x oy
Clang | Actions Observables = 2
1 2 2
Opt. passes seq. Compile & run
* 6 *h LLVM IR pt. p q Opt p | Target
platform
Results for CBench .TEXT size reduction without runtime degradation:
bem-:h.mark baseline Best result Gain, %
s et Method: heuristic search (least from positives per-step);
:',‘i’;'z"s" e Iterations num.:100 lterations;
e B Episode len.: 15;
sFm _ 6.361275964391691 PatlenCe 5
s s Runtime eval: 10 times, mean;
tiff2rgba 5.20897960871903 Env LLVI\/I7
qsort 4.854968113556881
stringsemch 3.0260047281323876 Benchmark: CBenCh-v1 ;
stringsearch2 2.7645788336933044
cre3z 1.4736842105263157 Actions: Oz extra.
dijkstra 0.7469654528478058 -
Challenges:

- Off-line full sequence prediction

- Static code characterization (flow-aware & scalable) methods construction & integration

- Convergence speed-up by subsequences extracted from ODG

- Optimal parameters prediction for parameterized passes (loop unroll, vectorize, inline, etc)
- ML methods improvement (achieved ~11% max size reduction on CBench with AC RL)

3. Automating Reinforcement Learning Architecture Design for Code Optimization (2022)
}_— Client RL search space 4

i Client RL Search

Specdup over
LLVMIGCC -03

Flgure 6. Speedup over LLVM/GCC 03 for superoptimiza-
. (h)

import SuperSonic as ss
from SuperSonic.statefunctions.models import

statefs = [Word2Vec(...

),Doc2Vec(...),CodeBert
(...),ActionHistory(...)]
tranfs = [ONN(...),CNN(...),LSTH(...)]
rewards = [RelativeMeasu .),tanh(...)1
rl_algs = [MCTS(...),PPO(...),DQN(...),QLearning
(=3
actions = [Init(...)]

class SuperOptimizer (ss.PolicyInt):
def __init__(self, statefs, tranfs, actions,

rewards, rl_algs):

self.PolicySpace = (
"StatList": statefs,
“TranList": tranfs,
"ActList actions,
“RewList rewards ,
"Alglist": rl_algs,

¥

self.search_engine =
PolicySpace)

SearchEngine (self.

def run(self):

#user code for compilation and executior

return Result(time=run_result['time’])

SuperOptimizer (statefs, tranfs,
rewards, rl_algs)
policy = opt.policy_search(
training_benchmark_list,

opt = actions,

nun_of _trials=100)

Opentuner (9Sicks @ SuperSonic

Speedup over
LLVMIGCC -03
8.

&

2000
Intet AMD

1500 2000 1000 1500
Tuning time (secands)

(a)

000
v

TH: 9 Lot (a)

S
Tuning terations

(b)

Figure 1. Overview of SUPERSONIC components. This framework enables developers to express the optimization space. It

Actions

Multi-armed Bandit based

Multi-task learning

Measurement Interface|

1
|
i
|
d Policy Search
1
|
|
'
|

SUPERSONIC

Offline Task defining and Client RL Search; Done once

automatically searches for the optimal client RL architecture to be used for inference during deployment.

Opentuner [Sicke BB SuperSoric

0
el

Table 2. Case studies in our evaluation

Use cases #Bench. Competing Methods Search space
C1: Optimizating image 10 Halide master [62], a2l ~ P gl
pipeline auto-schedulers [3],
HalideRL [68]. Open-
Tuner
C2: Neural network 5 AuteTVM [19], 5+10°~20«10°
code optimization Chameleon(5], Open-
Tuner
C3: Code size reduction 43 CompilerGym [23], 123% ~ 1231
OpenTuner
C4: Superoptimization 40 STOKE ([76]. Open- 900000 L gl6000000
Tuner [9]

Table 3. Candidate state functions and reward functions

Case Studies: 1 2 3 4
WordaVec [58]
Doc2vee [49] v v
CodeBert [29]
Manual features (e.g. LLVM IR v
State func. representation from [40])
Action History
Hash of Action History v
Relative measure (e.g. speedup, v

Reward fune, €0 sie reduction ratio)

Table 1. Example tunable parameters

Algorithms

Parameters

Common param.

Batch size for workers; Train batch size; Mini-
batch size: learning rate

MCTS Dirichlet noise and epsilon; Puct cocficient; Sim
ulation times; Loss temperature
PPO Entropy coefficient; Adam optimizer step size;
GAE estimator parameter; Policy ratio clipping
DON #atoms; Discrete supports: Adam epsilon; Clip
i dicnts
Chosen Ciient AL — e T
Architecture Learning loss temperature; Lagrangian threshold:
Min Q weight multplier
Opentuner (7 HalideRL 5 Auto-scheduler Bl SuperSonic
o5l -
g2 N R T T R TR
] Retraining and inference 3% 2§l i / It
SE™ :
gore
g813] :
o 10 1 10
Tuning time (hours)
(a)
Table 5. Search overhead required by SUPERSONIC to exceed
5 i : Opentuner (1 HalideRL 5 Auto-scheduler B SuperSonic
the performance given the best-performing alternative oo 12 -
gg IR
Ow 2.3 |
2g2
Use % of search time (& raw numbers) % of iterations (& raw numbers) 2918
cases BE
8813
MIN GeoMean MAX MIN GeoMean MAX 2 i - T
Case 36 396 72.1 39 4. 753 08— 36k 18k 36k 36k 18k 36k
study 1 | (21 mins) (4hours) (6 hours) 11‘425) (15821) (27.141) Tuning iterations.
Case 10 39. 4. 323 68.8
study2 | (1min) (24mins) (45 mins) (sss) (3.885) (8.256) ()
Case K. 310 61.1 29.7 835
study 3 (3 sec) (61 sec) (2 mins) (738) (10,714) (30,068) 5 %
Case 11 328 423 365 469 Figure 3. Performance to expert-tuned Halide schedules
studyd | (22sec) (11 mins) (14 mins) u 478) (43,745) (56,387) under different search time (a) and iteration (b) constraints.
SUPERSONIC gives the overall best performance than other
auto-tuning methods.
Se 'S4 God S¢ = S \lml eﬂ @ SuperSork
o oo B SiuscAmedno® Sipaork | G Sewch I Sl Aoocal D SuperSeni = E.;.’.;‘;:;!'m- 8 Simusiet AveshoME Seesoe _ GrdSeie | B S Arcsing 8 Supe
g8 TryTTnY Tevi S z LTI TITIT. TTITVL: 8 L TTILE cese: oovsi
g%, 1 a5l 1 551 J T 7 1 wQ”l 1
SE 15 §Z E " 52 b a8, il
E o K 8= 580,95}
g8 1| g5} 55005 = 00
&5 ookt LR £3 0g So8s5 2
= = Client RL search space

2
Client RL search space

(a) Optimizing Image Pipelines

50 0
Client RL search space

(b) Neural Network Code Generation

300
Client RL search space

(c) Code size reduction

(d) Superoptimization

~

\

+

Code features language models are used -- does not take into account data flow and control flow

Mainly implements Iterative approaches

I think that this is some overkill for us

Many different techniques and methods for finding the optimum are integrated, automated decision-making, which technique to use in

a particular case

Seems as very powerful and flexible meta-optimization framework for different ML-driven code transformation & optimization tasks

~

https://zwang4.github.io/publications/cc22.pdf

RL/GA combining with supervised learning

RL / GA + supervised learning

/ Benchmark \

dataset
* gzip
e zstd
e SPEC
e etc..

N

/~ GA/RL, any
unsupervised
* uses gcc_multienv

¢ function-granular

* highly parallel -> fast
convergence even for

Scenarios:

large benchmarks

)

J

A,

)
Q Ct
e ”o,,
@0' 0 &)
7
e

7

AN

Optimization lists &
corresponding function

embedding(cl_a_tas_eH

List for List for
function 1 function 2
from zstd from zstd

\
. N

List for List for
function 1 function 2
from gzip from gzip

j/ \

cTpaTteruu:

Strategy 1 Strategy 2 ... Strategy N

Pass list
constructor

Pass list for

given module

e Program classification by classes with known best optimizations
e Aggregation of passes to greater granularity ones (cm. Puc.)

(¢]
(¢]

Best optimizations for functions are known

Module to

compile

Module
function
embeddings

Aggregate the explicit sequence for module compilation (by passing this sequence as options to compiler driver / optimizer):
[] Compilation speed is important (but not critical)
[] Goal is to minimize the loss of quality
[] Mainly, controllability and security (trustworthiness) reasons

lterative Compilation Optimization Based on Metric Learning and Collaborative Filtering (2021) [1]

Using the recommendation system approach: learn the metrics between the program representations in that way that programs with similar best
pass sequences be closer in embedding space each to another.

Program Source Code

1) Supervised metric learning) Consider that pass sequence (A,B) is preferable for program p
than (A) and (B) separately, and also than (B,A), if.f O

f(b,(A,B))>f(p,(A)) ; f(p,(A,B))>f(p,(B)) ; f(p.(A,B))>f(b,(B,A)) , where =)

0E-o ——— fis the metric of performance gain. p
PRERTELES program feature ° Such passes, that A improves effectivity of pass B, so B depends O b VN
m pass pl’;‘,’ﬁ;?‘;,a] LI on A, are called “collaborative interactions” between A and B. J ‘«/'{‘

olmmma ° As collaborative interactions are oriented 2-ary relations on Y

sl passes, the full set of explored pass relations can be represented ()
pm.bs,q..m ; as oriented dependency graph -- ODG.

Collected Training Data o~

\
I) Pass subsequence construttion ")
and data enhancement h
ontd ation
506 59"

Collaborative filtering:

v
!

Currest Feanisé Vector v L S Recommend on the inference such
S e A«eﬁi"iiidel}' Miﬁ‘ffliﬁng}' e — subsequences that best optimize [6] : learn metric such that the distance
I—— programs “similar to the current program” between programs for which the same
’mm'T‘ e in some metric. pass sequences fit is small, and for not
) Online iterative | Subsequence Set same it is large
—, Pos

G AFi » Recotumiendation The article is based on more earlier article [1] with improved
Om’ " S Approach for subsequences construction. The [2] based on
Op 120 20 graph-structured agglomeration, when collaborative filtering

A K -]

. = o V4 I Py

with metric learning in [1] gives better results.
Pi <> i / — [1] Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. 2021.
i p,’O e ‘ I)j

o gt
7o %G8
72277 1160
z

w.r.t LLVM -03

Iterative Compilation Optimization Based on Metric Learning
and Collaborative Filtering. ACM Trans. Arch. Code Optim. 19,
1, Article 2 (December 2021), 25 pages.

Dy (i) < Du@in) DuWipi) > Dy (0iopi)

Fy \‘ https://doi.org/10.1145/3480250
| Ps 5 Iy opf? [2] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina
Y ',;,g —e— Data-driven Subsequences (Ours) Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP:
Npe mw 5100 3~ 15 Fred. Sidequences (cpentdisigaed) Mitigating the Compiler Phase-Ordering Problem Using
[Prew, - s R P Optimization Sub-Sequences and Machine Learning. ACM
Program instances ~ Sub-sequences noc) : Trans. Archit. Code Optlm 14, 3, Article 29 (September 201 7),

https://dl.acm.org/doi/pdf/10.1145/3480250 : 2 5 i s 28 pages. https://doi.org/10.1145/3124452

Length of Sequence

lterative Compilation Optimization Based on Metric Learning and Collaborative Filtering (2021) [1]

Using the recommendation system approach: learn the metrics between the program representations in that way that programs with similar best
pass sequences be closer in embedding space each to another.

Program Source Code

1) Supervised metric learning ° Consider that pass sequence (A,B) is preferable for program p
than (A) and (B) separately, and also than (B,A), if.f O
f(p.(A,B))>f(p.(A)) ; f(p.(A,B))>f(p,(B)) ; f(p,(A,B))>f(p,(B,A)) , where J ,/

Candidate Passes

Compiler
Front-end

il i = ——— fis the metric of performance gain. e O
e ! program feature) Such passes, that A improves effectivity of pass B, so B depends O S=4 e)
Dépend e speedup val . . 5 £ 3 =
Graph Cut pass | Taining | ’ T on A, are called “collaborative interactions” between A and B. ' N
. ¥ (1)
Table 7. Reported Speedup Numbers on the Columns 2 to 4 are A(B%): (A) Speedup (normalized by -03), Y AS CO”abOrathe |nteract|ons are Orlented 2_ary relat|ons on /ﬂ,\ 3 ~/
and (B) Percentage Speedup w.rt. Optimal Speedup Value of an Exhaustive Exploration of MiCOMP’s . () . T
RIC. Columns 5, 6, and 7 are the Best Optimization Sub-sequences found using an Exhaustive RIC with passes, the full set of eXplOfed pass relations can be represented st N
MiICOMP’s Sub-sequences, Their Corresponding Speedups, and Number of Iterations it Took to as oriented dependency graph - ODG. p
Outperform LLVM’s -03 (Total: 19k) o~
0)
MICOMP’s Prediction MiCOMP’s RIC] Hon -
Applications 1 prediction |5 predictions |10 predictions Beat f;un(‘li + “:” 70'3’ ou:perform 70‘30“\.) Segmenta
automotive_bitcount| 1.04 (95.38%) | 1.07 (98.12%) | 1.08 (98.92% BEACCA 119 553 A . . ODG
automotive_gsortl | 1.01 (9532%2) | 1.03 (96.93%) | 1.03 (9 CBAAAC T.o4 9.41 CO"abOI"atlve f||ter|ng:
automotive_susan_c) | 1.06 (98.53%) 1.06 (99.0 BDBCCB 1.32 8.1 .
automotive_susan_e)| 1.03(98.41%) | 1.04(99.0 AABACA 115 8.78 Recommend on the |nference SUCh
automotive_susan_s)| 101 (98.42%) | 102 (989 ECCCDE 122 836 . . .
baped HET IR T Bh] = subsequences that best optimize [6] : learn metric such that the distance
consumer_jpeg_c 1.01 (85.18%) | 1.07 (90.35%) 1:10 (94.51%) DDC Tl 8.64 “Simi 22 i
Lcnnaum;rﬁm:'v’d 1.09 (84.70%) | 1.14 (88.97%) 1.17 (97.85% CCED 1.18 9.74 programs Slmllar to the Cu rrent program between prog rams for WhICh the same
consumer_ti 2bw 0.96 (75.54%) | 0.99 (80.59%) | 1.02 (82.4 DDCAB 1.15 10.17 H q T
Somsamer 1201 (1o [0 36 52) T in some metric. pass sequences fit is small, and for not
consumer_ti dither 1.02 (80.14%) | 1.09) CCDCD 13 10.12 H
rnnsum;r)n medll.\n) DEDDC 1.32 10.48 Same It IS Iarge
consumer_mad) DCEDCD 12 10.34
consumer_lame 0.99 (89.21%) BCBACB 115 10.51 125 - - - - —
network_dijkstra__| 1.13 (60.00%) EECBBE 151 532 : The article is based on more earlier article [1] with improved
n ‘l\\'ﬂl’k,pdh’l cia 0.91 (74.99%) CECBAA 1.18 8.55 :
e o c I TR Ll S . - . Approach for subsequences _constructlon. The [21 baged on
office_ghostscript | 0.99 (79.99%) 1.03 (90.91% ABEBAE 110 1074 Q120 i % graph-structured agglomeration, when collaborative filtering
office_rsynth 1.01 (84.99%) 1.03 (93.91% ABCBA 112 10.55 = 7 P : f i ;
offi ingsearchl [0.98 (64.99%) 101 (73.91% ABCBAC 1.07 10.91 3 % Fie with metrlc_le_arnn?g In [1] Q'Ves _better results. .
security_sha 0.93 (64.99%) 103 (13.91% DACECA 110 121 = i ,,»‘/'rlﬁ‘r»s [1] Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. 2021.
security_blow sh_e | 0.97 (64.99%) BCCEEA 1.13 12.31] 77 1160 : ot ok : : f
e Hlow b T 1057605 SRR . 5 z Iterative Comp!latlor_1 Opt|m|zat|on Based on Metric Learnmg
security_rijndael_e_| 0.9 (64.99%) AEEC WY 12.12 2 and Collaborative Filtering. ACM Trans. Arch. Code Optim. 19,
security_rijndael_d | 1.00 (64.99%) ACCACE 1.06 12.17 ;:: :
telecom_adpem_c__| 0.96 (64.99%)) ECDDCC 135 923 & 1, Article 2 (December 2021), 25 pages.
telecom_adpem d__| 0.98 (64.99%) %) DCAACA 13 011 g5 https://doi.org/10.1145/3480250
telecom_gsm_d 0.93 (64.99%) | 1.03 (70.79%) 1.34 9.12 ;‘1 H : H H H it
telecom CRC3Z o107 (0035%) 5 =5 [2J Amir H. Ashouri, Andrga Bignoli, Gianluca Palermo, ‘Crlstlna
felecom_pep d 104 (96.61%) | 1.06 (98.53%) 121 584 —o— Data-driven Subsequences (Ours) Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP:
telecom_pgp_e 1.02 (80.14%) | 1.09 (85.86%) 1.11 (87.68%) DCA 1.22 9.12 i+ : H " i H
[Farmont mean 1107 (B471] 105 6751 109 91577 - 31 572 - e Svbaenucoees (cpert dcsined) gg;?rﬁ:;r;%i (t):escu%msr:f;;r;s;ea%d&gzﬁ iﬁ;ofg:\ ill:ZmECM
—-a—- MiCOMP Subsequence: . : N)
Program instances Sub-sequences - Trans. Archit. Code Optim. 14, 3, Article 29 (September 2017),

~

https://dl.acm.org/doi/pdf/10.1145/3480250 i . s 28 pages. https://doi.org/10.1145/3124452

3
Length of Sequence

Pass parameters tuning,
Arch-dependent optimizations

Pass parameters tuning / Arch-dependent optimizations

Embedding ol | int vec([512] __attribute__((aligned(16))); int vec[512] __attribute__ ((aligned(16)));
Embedding {State) __attribute_ ((noinline)) __attribute__((noinline))
O int examplel () { int examplel () {

Saramolecd int sum = 0; Jdnt osumo= 06
¥ Gradient for (int i 0; i<512; it++){ #pragma clang loop vectorize width ‘l' H

sum += vec[i]*vec[i]; ;intezx re.c D
) 'E‘o‘rlih‘t'i"%'D';"i?.,;',"'il'%')'{""'""""""A
return sum;) sum += vec[i]l#*vec[i];

return sum;

}

New Vectorization Factors

NeuroVectorizer** RL agent’s step example

e Mostly unsupervised
e Most simple characterization -- MaKCUMaIbHO MPOCTHIC
o Expertly selected features
o Sometimes code2vec (NLP-based)
e Usually tune a few optimizations (oftenly, only one, but much accurately)
e [[VM-based
e Examples:
o MLGO (2021)*: https://github.com/google/ml-compiler-opt
o NeuroVectorizer (2020)**: https://github.com/intel/neuro-vectorizer

* https://blog.research.google/2022/07/mlgo-machine-learning-framework-for.html

https://github.com/google/ml-compiler-opt
https://github.com/intel/neuro-vectorizer
https://blog.research.google/2022/07/mlgo-machine-learning-framework-for.html

Summary:

e There are a number of not only researched, but also tested in practice solutions for iterative pass
order auto-tuning.
e Most solutions look for passes for the entire translation unit
e Multi-step solutions look preferable, in particular, the superiority indicated by the authors of the
articles even over expertly selected sequences, while reducing the search time and overhead for
iterative measurement. Maybe it deserves consideration ...
e Splitting into subsequences in a multi-step approach is also an open question
e None of the solutions take into account the multi-criteria choice
e None of the phase-ordering/choosing approaches tune the passes parametrization (for ex. ‘UF’
for loop-unroll)
e Most of solutions use a quite inaccurate model for representing (characterizing) programs
o Ignoring information about data flows
o Ignoring the control flow
o Operating:
m By fixed set of features (for example, the number of instructions of a given type, the
size of the BB, etc. - for example, in [1] there are 56 of them, but aggregated as a
sum for each of the components of the feature vector)
m Or by embedding built on mechanisms from the field of natural language processing
(word2vec, code2vec, CodeBERT, etc)
m LLMs are quite new to use it

Review conclusion:

The most proven solution in practice for now is AutoPhase [1].
o The used model of the program features [1] is primitive -- IR2Vec (or alternative, for ex.
PrograML[11]) required [4], taking into account data and control flows.
m Itis important for convergency speed-up
o Improvements are also required in multi-step mode -- selection of subsequences from ODG, and
different policies for its implementation [2,3,6].

None of the solutions take into account the multi-criteria choice, only few solutions are constrained.
Some scenarios requires combination with supervised learning

None of the solutions takes into account the parametrization of passes (Except MLGO and
NeuroVectorizers, which focused only on few passes)

Additionally, the issue of optimizing individual functions (partial compilation) can be considered

Related work

1. Q. Huang, et al., "AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning," in 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, USA, 2019 pp. 308-308.

2. POSET-RL: https://arxiv.org/abs/2208.04238

3. [Wang, H, Tang, Z, Zhang, C et al]. (4 more authors) (2022) Automating Reinforcement Learning Architecture Design for Code Optimization. In: CC
2022: Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction. The 31st ACM SIGPLAN International Conference
on Compiler Construction (CC °22), 02-03 Apr 2022.

4. S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant. 2020. IR2VEC: LLVM IR
Based Scalable Program Embeddings. ACM Trans. Archit. Code Optim. 17, 4, Article 32 (December 2020), 27 pages.

5. Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong
Tian, and Hugh Leather. 2022. CompilerGym: robust, performant compiler optimization environments for Al research. In Proceedings of the 20th
IEEE/ACM International Symposium on Code Generation and Optimization (CGO '22). IEEE Press, 92—-105.

6. Liu et al. (2021) Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. 2021. lterative Compilation Optimization Based on Metric Learning and
Collaborative Filtering. ACM Trans. Arch. Code Optim. 19, 1, Article 2 (December 2021), 25 pages. https://doi.org/10.1145/3480250

7. Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the Compiler
Phase-Ordering Problem Using Optimization Sub-Sequences and Machine Learning. ACM Trans. Archit. Code Optim. 14, 3, Article 29 (September
2017), 28 pages. https://doi.org/10.1145/3124452

8. Zavodskikh R. K., Efanov N. N., Tomashev D. D. (2022). Using the LLVM Framework for static performance prediction with embedding of
intermediate representation. Proceedings of Moscow Institute of Physics and Technology. Vol. 14, 3 (55) pp 34-45.

9. Tagtekin, B., Hoke, B., Sezer, M. K., & Ozturk, M. U. (2021, August). FOGA: Flag Optimization with Genetic Algorithm. In 2021 International
Conference on INnovations in Intelligent SysTems and Applications (INISTA) (pp. 1-6). IEEE.

10. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O'Boyle, J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning to
focus iterative optimization,” in International Symposium on Code Generation and Optimization (CGO’06). IEEE, 2006, pp. 11—pp.

11. PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations (2021)
https://chriscummins.cc/pub/2021-icml.pdf

https://doi.org/10.1145/3124452

