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Compiler auto-tuning:

Compilers implements a lot of different transformation passes
● LLVM: ~160
● GCC: ~250
● At all, there about ~500 different types of passes
● Some passes are parametric (“loop-unroll”, etc.)

Pass sequences, which are “optimal in mean” for different optimization targets (size, perf, calculation accuracy), 
are grouped into “optimization levels”:

● О0, O1
● O2 (usually used in industry)
● O3
● Os, Oz…

Passes have different granularity levels, and require different program representations

Some programs (mostly all, in fact) can be better optimized, than -O*, if to tune the passes and their parameters 
more accurately.
The sequence of passes also oftenly important ( AB != BA ).



Problems and combinatorial estimations of search spaces

Note 1: 
Methods for automation of phases choosing, phase-ordering and phase parameters picking required
Note 2: 
There is no “ideal” order of passes applying in common case. Pass A transforms code in that it can corrupt the 
optimizations, which could be successfully performed by the pass B next to the A.

Thus, there is, for example, 3905 variants for l=5  



Compiler auto-tuning: passes reordering

Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using Optimization Sub-Sequences and Machine 
Learning. ACM Trans. Archit. Code Optim. 14, 3, Article 29 (September 2017), 28 pages. https://doi.org/10.1145/3124452

1. Iterative (n passes are applied, predict n+1)
+ Models can be relative simple
- One characterization per step
- Local min convergency risks

Different objectives, pass sets, even constrains:

Different solution approaches:

2. Full-sequence prediction
- Models are more complicated
- Requires accurate program representations
+ Requires only one characterization on inference
+ Much resistance to local min

Objective function

Constrains

MDP* (POMDP) Classification

For whole program p granularity 
For function-level granularity 



● Support by compiler
○ Switching passes on / off (in fixed order)
○ Pass-reordering
○ Infrastructure for working with IR, representations, optimizer, etc

● Optimal sequences search
○ Optimization space exploration
○ Benchmarks preparation & analysis
○ Algorithm choosing

■ EA, RL
■ Supervised learning, collaborative filtering

● Code characterization
○ By explicit (expert) features-selection
○ Graph-structured representation analysis (flow-aware)
○ By ML

● Specialization for target platform
○ Parameterized passes, parameters choosing
○ Prior knowledge about hardware features



Iterative compilation [1]

Sequential code re-compilation with different pass sequences for choosing the best (k-best)

+ Guaranteed best results via brute-force
+ Very simple approach

- Monstrous overhead / time consumption
- No knowledge transfer between experiments

1. Bodin, François & Kisuki, Toru & Knijnenburg, Peter & Boyle, Mike & Rohou, Erven. (2000). Iterative compilation in a non-linear 
optimisation space. Workshop on Profile and Feedback-Directed Compilation. 

sroa,
dse,
sccp,

…

Input Optimizer          Output         Build & Run   

Metrics  



Adaptive compilation (“Profiling guided optimization”) [2]
Profiling of instrumented program and applying of the best passes for collected profile

2. https://johnnysswlab.com/tune-your-programs-speed-with-profile-guided-optimizations/

+ Relatively simple approach
+ Approbated in industry (Firefox 

Mozilla, etc)

- No knowledge transfer
- Best results for certain profiles (and 

may be worse for another scenarios)



Modern approaches with ML

Train

Inference

Ashouri, Amir H. & Killian, William & Cavazos, John & Palermo, Gianluca & Silvano, Cristina. (2018). A Survey on Compiler Autotuning using Machine Learning. ACM Computing Surveys. 51. 96:1-. 10.1145/3197978. 

+ Knowledge transfer
+ Generalization
- Quite complex
- Require novel code characterization methods, benchmarks preparation 
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Ускорение поиска и трансфера знаний

Итеративная компиляция заложила основу автоматизированного подхода [Bodin и др., 1998-2000] и определила 
дальнейший вектор его развития. За ~25 лет успехи следующие:

● Последние десятилетия ускорение поиска осуществлялось в основном за счёт подходов с ГА и 
стохастический поиск [Tagtekin и др., 2021], а также комбинированием ГА с обучением с учителем [Agakov 
et al, 2006], etc.

● В последние 5-10 лет начали применять обучение с подкреплением, практические результаты 
демонстрируют существенно более быструю сходимость к результатам, как у ГА. При этом возникает 
возможность трансфера знаний

● Задан тренд на построение сложных методов характеризации, в т.ч. посредством обучения представлений
● Разработаны решения, использующие информацию о hardware для лучшей оптимизации (NeuroVectorizer)
● Исследовательские работы, как правило, не связываются со сложными критериями оптимизации 

(однокритериальная с ограничениями, многокритериальная). В основном, это победа над -O3 / -Os /-Oz
Наша группа, наоборот, использует нецелевые характеристики программ как ограничения

● Решения в данной технической области крайне быстро устаревают    

Bodin, François & Kisuki, Toru & Knijnenburg, Peter & Boyle, Mike & Rohou, Erven. (2000). Iterative compilation in a non-linear optimisation space. Workshop on Profile and 
Feedback-Directed Compilation.
Tağtekin, B., Höke, B., Sezer, M. K., & Öztürk, M. U. (2021, August). FOGA: Flag Optimization with Genetic Algorithm. In 2021 International Conference on INnovations in Intelligent 
SysTems and Applications (INISTA) (pp. 1-6). IEEE. 
F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning to focus iterative optimization,” in 
International Symposium on Code Generation and Optimization (CGO’06). IEEE, 2006, pp. 11–pp.



Appendix #1

https://arxiv.org/pdf/2003.00671.pdf
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Results for CBench .TEXT size reduction without runtime degradation:
Method: heuristic search (least from positives per-step);
Iterations num.:100 Iterations;
Episode len.: 15;
Patience: 5;
Runtime eval: 10 times, mean;
Env.: LLVM;
Benchmark: CBench-v1;
Actions: Oz_extra;
Target: size reduction under const performance degradation

Challenges:
- Off-line full sequence prediction (currently solved, can be improved)
- Static code characterization (flow-aware & scalable) methods construction & integration
- Convergence speed-up by subsequences extracted from ODG
- Optimal parameters prediction for parameterized passes (loop unroll, vectorize, inline, etc)
- ML methods improvement (achieved ~11% max size reduction on CBench with AC RL)

Appendix #2: Proof-of-concept with heuristic search, LLVM [Efanov, 2023]



Place for slides from En&T-2023 Conference…



Code characterization



● Static
○ Aggregated features (for ex, extracted by NLP [3] models or collected from IR by values of instructions, 

BBs, functions, phi-nodes counters, etc [1,4-5].)
○ Graph-structured (CFG, DFG, CallGraph, etc [4])
○ Mixed

● Dynamic
○ Arch-dependent (perf counters, etc) [2-4]
○ Arch-independent (for ex, number of function calls)

● Hybrid
○ Collect as much as …

   
1. Q. Huang, et al., "AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning," in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, USA, 2019 pp. 308-308.

2. POSET-RL: https://arxiv.org/abs/2208.04238

3. [Wang, H, Tang, Z, Zhang, C et al]. (4 more authors) (2022) Automating Reinforcement Learning Architecture Design for Code Optimization. In: CC 2022: Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction. The 31st ACM 
SIGPLAN International Conference on Compiler Construction (CC ’22), 02-03 Apr 2022.

4. S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant. 2020. IR2VEC: LLVM IR Based Scalable Program Embeddings. ACM Trans. Archit. Code Optim. 17, 4, Article 32 (December 2020), 27 
pages.

5. Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and Hugh Leather. 2022. CompilerGym: robust, performant compiler optimization environments for AI 
research. In Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization (CGO '22). IEEE Press, 92–105.
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Code characterization

Note: 
● Несмотря на “раскрученность”, модели на основе  NLP (code2vec, CodeBERT, etc) применяются не так часто, 

что обусловлено многими факторами: нечувствительностью к потоковой информации, трудностью 
определения семантики (и, как результат, невозможностью обеспечения некоторых свойств представления). 
Модели, для которых операционная семантика определена, оперируют более сложными структурами 
контекста, чем скип-грамма из последовательности слов. (“Код -- это не текст”)

● Решения на основе LLM появляются (первая работа -- сентябрь 2023 г.). Качество результатов -- пока что не 
высокое (3% для уменьшения количества инструкций без ограничений на LLVM). 
https://arxiv.org/pdf/2309.07062.pdf

https://arxiv.org/pdf/2309.07062.pdf


Code characterization: from experience view

● NLP-based models are inaccurate (program is not a token sequence, relations between 
entities should be extracted ) [1]. Relations and semantics matters [4,11].

○ Thus, graph-based characterization methods required (or another kind, which take into 
account the relations on instructions, variables, arguments, types, etc)

○ Theoretically, inst2vec should give the best results in comparison with another,
Because of taking into account graph-structure of program flows. But it is not enough.

● Manually-crafted features (intsr.number, bb sizes, trip-counts) are specialization (suitable for 
certain applications rather than for general purpose) 

○ Question of automation is opened -- defaultly, need experts

● Dimensionality reduction required
○ In case IR2Vec, the inference sometimes taken in minutes for relative big programs (for 

~600 lines in TU)
○ Sparsity reduction of feature space will lead, at least, to сonvergence speed gain

● Models
○ Should keep of semantics (demonstrated [11], that CFG,DFG,Call,Type graph-based 

methods are relatively good in this criteria).
○ Should be extensible to represent static & dynamic features

● The first model with LLMs [https://arxiv.org/pdf/2309.07062.pdf] shows some minor results for 
unconstrained size reduction.

https://arxiv.org/pdf/2309.07062.pdf


Code characterization: AutoPhase repr. Vs InstCount
AutoPhase     InstrCount

…

In both cases stronger performance is achieved when coupling the 
program representation with a histogram of the agent’s previous 
actions. The Autophase representation encodes more attributes of 
the structure of programs than InstCount and achieves greater 
performance

Accurate choosing of representation 
leads to:

- Convergence speedup
- Results improvement



1. Read LLVM IR statements once, storing function names and return statements. 
2. Second pass over the statements, adding nodes and edges according to the following rule-set:
 (a) Data dependencies within a basic block are connected.
 (b) Inter-block dependencies (e.g., φ-expressions) are both connected directly and through the label identifier (statement-less edges).
 (c) Identifiers without a dataflow parent are connected to their root (label or program root).
 (d) Calls to external code (e.g., libraries, frameworks) are divided into two categories: statically-(connections) and dynamically-linked (stubs).
3. Achieved XFG becomes a context for  inst2vec statement (упрощённый LLVM IR). Then, skip-gram learning is used to learn the embedding (XFG as 
set of paths) https://github.com/spcl/ncc

Характеризация кода: Inst2vec (2018) “Statements that occur in the same contexts tend to have similar semantics.”

Note: that’s way data-flow is taken into account



https://arxiv.org/abs/1909.06228

Сode characterization:  IR2Vec (2020)
Seed dictionary (pre-trained) for  LLVM IR entities + combination rules

Note: that’s way data-flow is taken into account 

Note: that’s way control-flow is taken into account 



https://arxiv.org/abs/1909.06228

Note: that’s way data-flow is taken into account

Note: that’s way control-flow is taken into account

Note: 
● Data-flow sensitive
● Questions to CFG sensitivity ( “+” commutativity)
● Questions to original implementation (NextInst is not used)…
● Previously approved by LLVM-community for MLGO integration
● Quite strange but practically appliable

Сode characterization:  IR2Vec (2020)
Seed dictionary (pre-trained) for  LLVM IR entities + combination rules



Code characterization:  IR2Vec [4,8] : Experiments & Alternatives
TransE pre-trained LLVM IR entities+manual rules

In [Zavodskikh et al, 2022] Zavodskikh R.K. (my PhD student) have experimentally checked the ability of 
IR2Vec to save statically estimated reuse-distance between accessed array elements for chosen types of 
loops. It is determined that the method reflects the instrumentation data in representation vectors, and results 
of estimation are correlated with Linux Perf measurements. Thus, it demonstrates the ability of IR2Vec to 
represent control-flow and data-flow accurately enough.

Also, there are alternative methods of flow-aware program features extraction recently published 
(https://ieeexplore.ieee.org/document/9275317, https://chriscummins.cc/2017/deep-learning-in-compilers), 
mostly based on graph-structures deep learning via message-passing graph neural networks. But this 
solutions seems more hard to implement (except PrograML [11], which already integrated to CompilerGym), 
re-train and use, in contrast with IR2Vec, in which the basic relations on IR entities are extracted manually 
and pre-trained as a seeds for representation of compound entities as superpositions of the constituents 
vectors.

Nevertheless, there are a list of drawbacks of the method detected:
-- BBs are not ordered according to the original CFG order.
-- Original implementation of the method not takes into account NextInst relations (unlike in the method   
description [4].
Thus, the implementation should be improved.

https://ieeexplore.ieee.org/document/9275317
https://chriscummins.cc/2017/deep-learning-in-compilers


Note: Data-Flow Note: CallGraph and TypeInfo*

 ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations  (2021) https://chriscummins.cc/pub/2021-icml.pdf

Note: Control-Flow
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Code characterization: ProGraML (2021)
Graph-structured, flow-aware, type-aware representation, forwarded to MP-GNN

Embedding construction approach:
● inst2vec for nodes-statements
● Relations learning: MP-GNN
● In some sense, this is mixed approach

* There some type elision in LLVM IR 



Code characterization:  mixed static methods (static features +  CFG / VFG)
GCC GIMPLE-SSA embedding [Otrashchenko, Akimov, Efanov, 2023]

Expertly chosen cnts               DFG / VFG embeddings 

GIMPLE-SSA



RL/GA Approach: GCC PHO (external ppt)



Appendix 1: Proof-of-concept with heuristic rearch
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Results for CBench .TEXT size reduction without runtime degradation:

Method: heuristic search (least from positives per-step);
Iterations num.:100 Iterations;
Episode len.: 15;
Patience: 5;
Runtime eval: 10 times, mean;
Env.: LLVM;
Benchmark: CBench-v1;
Actions: Oz_extra.

Challenges:
- Off-line full sequence prediction
- Static code characterization (flow-aware & scalable) methods construction & integration
- Convergence speed-up by subsequences extracted from ODG
- Optimal parameters prediction for parameterized passes (loop unroll, vectorize, inline, etc)
- ML methods improvement (achieved ~11% max size reduction on CBench with AC RL)



https://zwang4.github.io/publications/cc22.pdf

3. Automating Reinforcement Learning Architecture Design for Code Optimization (2022)

- Code features language models are used -- does not take into account data flow and control flow
- Mainly implements Iterative approaches 
- I think that this is some overkill for us
+ Many different techniques and methods for finding the optimum are integrated, automated decision-making, which technique to use in 

a particular case
+ Seems as very powerful and flexible meta-optimization framework for different ML-driven code transformation & optimization tasks



RL/GA combining with supervised learning



RL / GA + supervised learning

Scenarios:
● Program classification by classes with known best optimizations
● Aggregation of passes to greater granularity ones (см. Рис.)

○ Best optimizations for functions are known
○ Aggregate the explicit sequence for module compilation (by passing this sequence as options to compiler driver / optimizer):

■ Compilation speed is important (but not critical)
■ Goal is to minimize the loss of quality
■ Mainly, controllability and security (trustworthiness) reasons

стратегии:



   Iterative Compilation Optimization Based on Metric Learning and Collaborative Filtering (2021) [1]

ODG segmentation

Collaborative filtering:
Recommend on the inference such 
subsequences that best optimize 
programs “similar to the current program” 
in some metric.

[6] : learn  metric such that the distance 
between programs for which the same 
pass sequences fit is small, and for not 
same it is large

Using the recommendation system approach: learn the metrics between the program representations in that way that programs with similar best 
pass sequences be closer in embedding space each to another. 

https://dl.acm.org/doi/pdf/10.1145/3480250

The article is based on more earlier article [1] with improved
Approach for subsequences construction. The [2] based on 
graph-structured agglomeration, when collaborative filtering 
with metric learning in [1] gives better results.
[1] Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. 2021. 
Iterative Compilation Optimization Based on Metric Learning 
and Collaborative Filtering. ACM Trans. Arch. Code Optim. 19, 
1, Article 2 (December 2021), 25 pages.
https://doi.org/10.1145/3480250
[2] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina 
Silvano, Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: 
Mitigating the Compiler Phase-Ordering Problem Using 
Optimization Sub-Sequences and Machine Learning. ACM 
Trans. Archit. Code Optim. 14, 3, Article 29 (September 2017), 
28 pages. https://doi.org/10.1145/3124452

● Consider that pass sequence (A,B) is preferable for program p 
than (A) and (B) separately, and also  than (B,A), if.f 
f(p,(A,B))>f(p,(A)) ; f(p,(A,B))>f(p,(B)) ; f(p,(A,B))>f(p,(B,A)) , where 
f is the metric of performance gain.

● Such passes, that A improves effectivity of pass B, so B depends 
on A, are called “collaborative interactions” between A and B. 

● As collaborative interactions are oriented 2-ary relations on 
passes, the full set of explored pass relations can be represented 
as oriented dependency graph -- ODG.
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Pass parameters tuning,
Arch-dependent optimizations



Pass parameters tuning /  Arch-dependent optimizations

● Mostly unsupervised
● Most simple characterization -- максимально простые

○ Expertly selected features
○ Sometimes code2vec (NLP-based)

● Usually tune a few optimizations (oftenly, only one, but much accurately)
● LLVM-based
● Examples:

○ MLGO (2021)*: https://github.com/google/ml-compiler-opt
○ NeuroVectorizer (2020)**: https://github.com/intel/neuro-vectorizer

* https://blog.research.google/2022/07/mlgo-machine-learning-framework-for.html

NeuroVectorizer** RL agent’s step example

https://github.com/google/ml-compiler-opt
https://github.com/intel/neuro-vectorizer
https://blog.research.google/2022/07/mlgo-machine-learning-framework-for.html


Summary:
● There are a number of not only researched, but also tested in practice solutions for iterative pass 

order auto-tuning.
● Most solutions look for passes for the entire translation unit
● Multi-step solutions look preferable, in particular, the superiority indicated by the authors of the 

articles even over expertly selected sequences, while reducing the search time and overhead for 
iterative measurement. Maybe it deserves consideration ...

● Splitting into subsequences in a multi-step approach is also an open question
● None of the solutions take into account the multi-criteria choice
● None of the phase-ordering/choosing approaches tune the passes parametrization (for ex. ‘UF’ 

for loop-unroll)
● Most of solutions use a quite inaccurate model for representing (characterizing) programs

○ Ignoring information about data flows
○ Ignoring the control flow
○ Operating:

■ By fixed set of features (for example, the number of instructions of a given type, the 
size of the BB, etc. - for example, in [1] there are 56 of them, but aggregated as a 
sum for each of the components of the feature vector)

■ Or by embedding built on mechanisms from the field of natural language processing 
(word2vec, code2vec, CodeBERT, etc)

■ LLMs are quite new to use it



Review conclusion:

● The most proven solution in practice for now is AutoPhase [1].
○ The used model of the program features [1] is primitive -- IR2Vec (or alternative, for ex. 

PrograML[11]) required [4], taking into account data and control flows.
■ It is important for convergency speed-up

○ Improvements are also required in multi-step mode -- selection of subsequences from ODG, and 
different policies for its implementation [2,3,6].

● None of the solutions take into account the multi-criteria choice, only few solutions are constrained. 
Some scenarios requires combination with supervised learning

● None of the solutions takes into account the parametrization of passes (Except MLGO and 
NeuroVectorizers, which focused only on few passes)

● Additionally, the issue of optimizing individual functions (partial compilation) can be considered
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