Геометрические методы управления в сплошных средах

Руководитель д.ф.-м.н., профессор, г.н.с. Лычагин В.В. Отчет за второй год проекта МНШ 17 мая 2022 ИПУ РАН

Nº	ФИО	Дата рождения	Должность	Уч. звание	Лаб	Примечание
1	Арутюнов А.А.	15.02. 1988	C.H.C.	К.фм.н.	6	
2	Костючек М.И.	31.08. 1997	математик	нет	6	В МНШ с февраля 2022
3	Латипов А.Р.	16.09. 1997	M.H.C.	нет	82	
4	Мухина С.С.	14.08.1998	матем.	нет	6	
5	Рябушев Е.А.	30.12. 1996	M.H.C.	нет	6	В МНШ с января 2022
6	Горинов А.А.	24.12. 1991	M.H.C.	нет	6	Выбыл в связи с увольнением в апреле 2022
7	Рооп М.Д.	21.11.1996	м.н.с.	нет	6	Выбыл в связи с увольнением в январе 2022
8	Пучковский С.А.	24.01.1997	матем.	нет	82	
9	Лычагин В.В.	01.04.1947	г.н.с.	Д.фм.н.	06	Руководитель
10	Батов А.В.	21.10. 1986	C.H.C.	К.фм.н.		Выбыл по возрасту в октябре 2021
11	Шевляков А. А.	25.07.1986	C.H.C.	К.фм.н.		Выбыл по возрасту в июле 2021

Объявленные цели проекта

Этап 1:

- Ударные волны и фазовые переходы в течениях газов в трубопроводах.
- Управление фильтрацией в газовых месторождениях.
- Разработка моделей движения сред, обладающих внутренней структурой.
- Управление термодинамическими процессами.

Этап 2:

- Будут развиты методы расчета и управления процессами в сплошных средах.
- Будут рассмотрены задачи фильтрации газов, даны методы расчета областей фазового перехода,
- Будут рассмотрены задачи моделирования и управления в сплошных средах управления термодинамическими процессами.
- Будет развита геометрическая теория термодинамики для многокомпонентных сред.

Участие в научных мероприятиях

- Winter School & Workshop Wisla 22 «Differential Geometry and its applications: fluid dynamics, dispersive systems, image processing, and beyond», 24 января 4 февраля 2022 года, Wisla, Poland.
- 14th International Conference "Management of Large-Scale System Development" (MLSD-2021), Russia, Moscow, ICS RAS, 27-29 Sept. 2021.
- 14-я Мультиконференция «МКПУ-2021», 27 сентября 2 октября 2021 г. Дивноморское, Геленджик.
- Ломоносовские чтения 2022. МГУ имени М.В.Ломоносова, Россия, 18-21 апреля 2022.
- II Всероссийская научная конференция «Дифференциальные уравнения и их приложения», Рязань, РГУ имени С.А. Есенина 18-20 мая 2022 г.

Публикации и диссертации

Всего 13 публикаций, из них:

WoS и Scopus: 3.

РИНЦ: 10.

Кандидатская диссертация

Рооп М.Д. *Критические явления в решениях нелинейных дифференциальных уравнений механики сплошных сред* (01.01.03 - Математическая физика). Защищена в совете МГУ 24 ноября 2021 г.

Анализ и управление течениями жидкости и газа

Заявка на новый проект МНШ
2022 — 2024
Руководитель д.ф.-м.н., профессор, г.н.с.
Лычагин В.В.

17 мая 2022 ИПУ РАН

Nº	ФИО	Дата рождения	Должность	Уч. звание	Лаб
1	Арутюнов А.А.	15.02. 1988	C.H.C.	К.фм.н.	6
2	Костючек М.И.	31.08. 1997	математик	нет	6
3	Латипов А.Р.	16.09. 1997	M.H.C.	нет	82
4	Рябушев Е.А.	30.12.1996	M.H.C.	нет	6
5	Пучковский С.А.	24.01.1997	матем.	нет	82
6	Лычагин В.В.	01.04.1947	г.н.с.	Д.фм.н.	6

Краткое описание проекта

Проект посвящен исследованию течений жидкости и газа, описываемых уравнениями Навье — Стокса, Эйлера и Дарси — Форхаймера.

Особое внимание будет уделено анализу сингулярных явлений, таких как ударные волны и фазовые переходы первого и второго рода. Это потребует более детального термодинамического описания рассматриваемых сред, а также развития методов исследования фазовых переходов, основанных на теории Маслова-Арнольда особенностей проекций лагранжевых и лежандровых многообразий.

Предполагается изучать течение в средах, обладающих внутренней структурой, а также магнитогидродинамике.

Фундаментальная научная проблема, на решение которой направлен проект

Развитие аналитических и численных методов для анализа и управления течениями и фильтрацией жидкостей и газа в средах, обладающих внутренней структурой, и в присутствии гравитационного и электромагнитных полей.

Конкретная фундаментальная задача

Будут развиты аналитические, асимптотические и численные методы расчета и управления течениями Навье-Стокса, Эйлера и Дарси-Форхаймера в средах, обладающих внутренней структурой (например, в молекулярных средах), с учетом гравитационного и электромагнитного полей (магнитогидродинамика).

Для исследования критических явлений, таких как ударные волны и фазовые переходы, будет использована теория особенностей проекций лагранжевых многообразий, а также теория дифференциальных инвариантов и факторуравнений.

Принцип максимума энтропии будет использовани при анализе управления добычей газа для большого количества скважин при заданной системе ограничений.

Поэтапное планирование

• Этап 1 (июнь 2022 - май 2023)

Разработка методов расчета и управления течениями Навье-Стокса, Эйлера и Дарси-Форхаймера в средах, обладающих внутренней структурой, с учетом гравитационного и электромагнитного полей.

Публикации: Scopus, Wos: 2 РИНЦ: 4

Этап 1 (июнь 2023 - май 2024)

Исследование критических явлений (ударных волн и фазовых переходов) с помощью теория особенностей проекций лагранжевых многообразий, а также теории дифференциальных инвариантов и фактор-уравнений.

Анализе управления добычей углеводородов при большом количестве источников при заданной системе ограничений.

Публикации: Scopus, Wos: 2 РИНЦ: 2

 Γ_{λ} – группоид действия. Т.е. $Obj(\Gamma_{\lambda})=G,\ Hom(\Gamma)=G\times G.$ Причем морфизм $(a,g)\in Hom(a,g(a)).$ Если a=h(b), то композиция определяется естественным образом

$$(a,g)\circ(b,h):=(b,gh)\in Hom(b,g(a)).$$

Пространство характеров

Через $X(\Gamma_\lambda)$ обозначим пространство отображений $\chi: Hom(\Gamma_\lambda) \to \mathbb{C}$ таких, что $\chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)$, для пар компонируемых морфизмов, удовлетворяющих условию локальной финитности.

А именно для каждого $a \in G$ имеем $\chi(a,g) = 0$ для всех кроме конечного числа g.

Два важных (для нас) подпространства в $X(\Gamma_{\lambda})$

- ▶ $X_0(\Gamma_{\lambda})$ характеры, тривиальные на петлях;
- $X_0^c(\Gamma_\lambda)$ характеры, тривиальные на петлях и таких, что χ нетривиален на Hom(a,b) для конечного числа элементов a.

На групповой алгебре $\mathbb{C}[G]$ для характера $\chi \in X(\Gamma_{\lambda})$ зададим оператор по формуле

$$\alpha(a) := a \sum_{m \in G} \chi(m, a) a^{-1}(m).$$

Операторы, порождаемые $X(\Gamma_{\lambda}), X_0(\Gamma_{\lambda}), X_0^c(\Gamma_{\lambda})$ обозначим через $\mathcal{A}, \mathcal{A}_0, \mathcal{A}_0^c$ соответственно.

Теорема (А, 21)

 \mathcal{A} – алгебра Ли.

Мотивирующий пример

Если λ – действие сопряжениями, т.е. $g(a) = g^{-1}ag$, то

- А совпадает с дифференцированиями групповой алгебры:
- ▶ A₀ квазивнутренними дифференцированиями;
- ightharpoonup \mathcal{A}_0^c внутренними дифференцированиями вида $x\mapsto [a,x]$.

Андроник

Операторные алгебры

Через $\mathcal{A}(\Gamma_{[u]}), \mathcal{A}_0(\Gamma_{[u]}), \mathcal{A}_0^c(\Gamma_{[u]})$ будем обозначать операторные пространства, порождаемые характерами, нетривиальными только на субгруппоиде $\Gamma_{[u]}.$

Теорема (А, 21)

Для конечнопорожденной группы G число $e(sk_u)$ – не зависит от копредставления группы, и справедливо неравенство $e(sk_u) \leq e(G)$. Если, кроме того, $0 < e(sk_u)$, то справедливо равенство

$$\dim \left(\mathcal{A}_0(\Gamma_{[u]})/\mathcal{A}_0^c(\Gamma_{[u]})\right) = e(sk_u) - 1.$$

Конечно, если $e(sk_u) = 0$, то в правой части получаем 0.

Идея доказательства

Элементы пространства $\mathcal{A}_0(\Gamma_{[u]})/\mathcal{A}_0^c(\Gamma_{[u]})$ отождествляются с концами графа sk_u , то есть с характерами, у которых при "больших" g количество ненулевых значений на морфизмах вида (*,g) неограниченно растет.

Определение

Линейный оператор $d:\mathbb{C}[G] o\mathbb{C}[G]$ называется дифференцированием, если справедливо правило Лейбница

$$d(uv) = d(u)v + ud(v).$$

Дифференцирование называется внутренним, если оно можно быть записано в виде $x \to [a,x]$ для некоторого $a \in \mathbb{C}[G]$.

Теорема (AMS, 2016)

Линейный оператор $d:\mathbb{C}[G]$ – является дифференцированием $d\in Der(\mathbb{C}[G])$ тогда и только тогда, когда существует $\chi\in X(\Gamma)$ такой, что $\forall g\in G$

$$d(g) = \sum_{m \in G} \chi(m, g) mg.$$

При этом характеры $\chi \in X_0^c$ (и только они) соответствуют внутренним дифференцированиям $Inn(\mathbb{C}[G])$.

Применение теоремы

Дифференцирования из \mathcal{A}_0 – образуют идеал квазивнутренних QInn. Применяя теорему о числе концов в графе sk_u получаем

Некоторые следствия

- ightharpoonup Если e(G) = 1, то QInn = Inn;
- ▶ Все дифференцирования в FC—группах внутренние;
- ▶ Если e(G) > 1, то стандартные результаты для вычисления гомологий Хохшильда не могут быть пересены на случай "алгебраических" групповых алгебр.

Декомпозиция

 G^G — множество классов сопряженных элементов, Z([u]) — соответствующий централизатор, $Hom(Z([u],\mathbb{C})$ — пространство групповых характеров на Z([u]), порождаемых локально-финитными характерами. Тогда:

$$QOut(\mathbb{C}[G])\cong igoplus_{[u]\in G^G} Hom(Z([u]),\mathbb{C}).$$

Операторные алгебры

$$D(ab) = D(a)\tau(b) + \sigma(a)D(b)$$

Chaudhuri, " (σ, τ) —derivations of group rings", 2018

Если G — конечная группа, то все (σ, τ) -дифференцирования в $\mathbb{C}[G]$ — внутренние.

Для бесконечных групп это вообще говоря неверно.

Theorem (AAS, 2020)

Если $\sigma, \tau \in End(G), \varphi: G \to (\mathbb{C}, +), a \in Z_{\sigma, \tau}(G)$ то будет σ, τ дифференцированием отображение, заданное на образующих

$$D(g) = \varphi(g)\sigma(g)a$$
.

Здесь $a \in Z_{\sigma,\tau}$ значит, что $a\tau(v) = \sigma(v)a$.

алгебры

Пусть $x=\sum x(g)g$, где x(g) – коэффициент, $x(g)\in\mathbb{C}$.

Зададим "супремумную" норму, и соответствующий бимодуль A_{ς}

$$||x||_s := \sup_{g \in G} |x(g)|.$$
 (1.1)

Lemma

Все дифференцирования в бимодуле A_s – квазивнутренние.

Пусть теперь имеем норму $\|\cdot\|$ на кольце $\mathbb{C}[G]$ такую, что $\|g\| \geq \|g\|_s, \forall g \in \mathbb{C}[G]$. Соответствующий норме $\|\cdot\|$ бимодуль обозначим через A.

Theorem

Все дифференцирования в бимодуле A квазивнутренние.

Отчёт по Молодёжной научной школе под управлением Лычагина В.В.

Фильтрация газа при постоянных термодинамических потенциалах

Костючек М.И.

Институт проблем управления им. В.А. Трапезникова РАН, Москва, Россия

Фильтрация реального газа

Уравнение сохранения массы

$$\frac{\partial(m\rho)}{\partial t} + \operatorname{div}(\rho U) = 0.$$

Закон Дарси:

$$U = -\frac{k}{\mu} \nabla_p.$$

Здесь $\rho=\frac{1}{v}$ – плотность газа; m – пористость среды; U – скорость фильтрации; k=k(v,T) – проницаемость (скаляр); T – температура газа; $\mu=\mu(v,T)$ – вязкость газа.

Пусть пористая среда не деформируется с течением времени, т.е. $m=m(x),\,x$ – вектор пространственных координат.

Постоянство термодинамического потенциала даёт нам дополнительное условие, которое позволяет записать все уравнения только для одной переменной.

2022 2/8

Фильтрация при постоянном термодинамическом потенциале

Условие постоянства термодинамических потенциалов даёт соотношение на плотность ρ и температуру T.

$$\alpha_c = f(\rho, T),$$

здесь α_c — фиксированное значение одного из термодинамических потенциалов: энтропии, энтальпии или свободной энергии Гиббса.

Выразив T через ρ и подставив в термическое уравнение состояния, получаем соотношение

$$p = p(\rho)$$
.

Тогда уравнения фильтрации можно переписать в виде.

$$\operatorname{div}\left(\frac{k}{\mu}\rho \, p'(\rho)\nabla_{\rho}\right) = m\frac{\partial\rho}{\partial t},$$
$$\Delta\left(Q_{1}(\rho)\right) = m\frac{\partial\rho}{\partial t},$$

где

$$Q_1(\rho) = \int \frac{k}{\mu} \rho \, p'(\rho) d\rho.$$

4□ > 4団 > 4 豆 > 4 豆 > 9 Q @

Асимптотика

Введём безразмерное время t/τ и обозначим его как и раньше t. τ – время наблюдения за фильтрацией. Обозначим $\epsilon=1/\tau$.

$$\Delta\left(Q_1(\rho)\right) = \epsilon m \frac{\partial \rho}{\partial t}.$$

Пусть
$$\rho(\mathbf{x},t) = \sum_{k\geq 0} \frac{\epsilon^k}{k!} \rho_k(\mathbf{x},t)$$
.

Уравнение для члена нулевого порядка:

$$\Delta\left(Q_1(\rho_0)\right) = 0.$$

Обозначив $u_0 = Q_1(\rho_0)$ получаем уравнение Лапласа для переменной u_0 :

$$\Delta u_0 = 0.$$

Уравнение для члена первого порядка:

$$\Delta(\rho_1 Q_1'(\rho_0)) = m \frac{\partial \rho_0}{\partial t}.$$

Обозначив $u_1 = \rho_1 Q_1'(\rho_0)$ получаем уравнение Пуассона для переменной u_1 :

$$\Delta u_1 = m \frac{\partial \rho_0}{\partial t}.$$

022 4/8

Фильтрация в сфере

Пусть фильтрация происходит в области D ограниченной сферой S радиуса R, n – внутренняя нормаль. На границе сферы ставится условие непроницаемости, т.е. производная решения по вектору n равна нулю. Внутри D расположены источники и стоки в точках a_j с интенсивностью $c_j(t),$ при этом $\sum c_j(t)=0$.

Уравнение для член нулевого порядка

$$\begin{cases} \Delta u_0 = \sum_j c(t)\delta_{a_j}, & \mathbf{x} \in D \\ \frac{\partial u_0}{\partial n} \Big|_S = 0 \end{cases}$$

Решение:

$$u_0(\mathbf{x}, t) = \frac{1}{4\pi} \sum_{j} c_j(t) \left(-\frac{1}{|\mathbf{x} - a_j|} - \frac{1}{4\pi} \int_{\partial D} G(\eta, \mathbf{x}) \frac{R^2 - (\eta, a_j)}{R|\eta - a_j|^3} dS_{\eta} \right).$$

где $G(\eta,\mathbf{x})$ – функция Грина задачи Неймана ($\Delta u=\delta$) для шара радиуса R

$$G(\eta, \mathbf{x}) = -\frac{1}{4\pi} \left[\frac{2}{|\mathbf{x} - \eta|} - \frac{1}{R} \ln \left(R + |\mathbf{x} - \eta| - \frac{(\mathbf{x}, \eta)}{R} \right) + \ln(2R) \right].$$

Фильтрация в сфере

Уравнение для члена первого порядка:

$$\begin{cases} \Delta u_1 = m \frac{\partial \rho_0}{\partial t} \\ \frac{\partial u_1}{\partial n} \Big|_S = 0 \end{cases}$$

Решение будет иметь вид

$$u_1 = \int_D G(\eta, \mathbf{x}) m \frac{\partial \rho_0}{\partial t} dV_{\eta},$$

где $G(\eta,\mathbf{x})$ – функция Грина задачи Неймана ($\Delta u=\delta$) для шара радиуса R

$$G(\eta,\mathbf{x}) = -\frac{1}{4\pi} \left[\frac{2}{|\mathbf{x}-\eta|} - \frac{1}{R} \ln \left(R + |\mathbf{x}-\eta| - \frac{(\mathbf{x},\eta)}{R} \right) + \ln(2R) \right].$$

2022 6/8

Фазовый переход метана

Условия фазового перехода:

$$p(v_1, T) = p(v_2, T), \quad \gamma(v_1, T) = \gamma(v_2, T),$$

 γ – свободная энергия Гиббса.

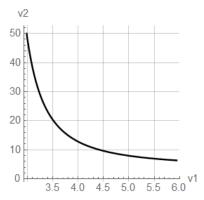


Рис.: Кривая фазового перехода в плоскости (v_1, v_2)

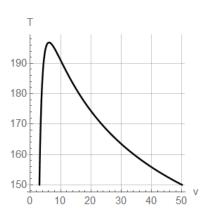


Рис.: Кривая фазового перехода в плоскости (v,T)

2022 7/8

Спасибо за внимание!

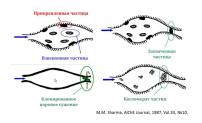
«СИММЕТРИИ И ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ГЛУБОКОЙ ФИЛЬТРАЦИИ СУСПЕНЗИИ В ПОРИСТОЙ СРЕДЕ»

Мухина Светлана Сергеевна

Лаборатория №6

Технологии захвата твердых частиц

При фильтрации суспензии в пористой среде происходит захват частиц в поровом пространстве, в результате поры забиваются и характеристики (фильтрационно-ёмкостные) нефтяного пласта ухудшаются. Суспензия: жидкая среда (нефть, вода) и твердая фаза (мельчайшие частицы).





Мухина С.С. Лаборатория №6

Математическая модель глубокой фильтрации суспензии

Пусть t — время, x — пространственная координата (ось Ox направлена в сторону течения флюида), u(t,x) - концентрация взвешенных частиц, v(t,x) - концентрация захваченных частиц, h(v) — коэффициент захвата частиц, выражающий вероятность захвата частицы пористой средой.

$$\begin{cases} \frac{\partial u}{\partial t} = -\frac{\partial u}{\partial x} - h(v)u, \\ \frac{\partial v}{\partial t} = h(v)u, \end{cases}$$
 (1)

3/10

Допущения:

- 1. изначально пористая среда насыщена той же жидкостью, что и дисперсионная среда;
- 2. физические скорости частиц совпадают со скоростью несущей жидкости;
- 3. пористость пространства постоянна;
- 4. несжимаемость частиц;
- 5. диффузионным движение жидкости пренебрегается;

Мухина С.С. Лаборатория №6

Координатное представление векторного поля:

$$X = A(t, x, u, v) \frac{\partial}{\partial t} + B(t, x, u, v) \frac{\partial}{\partial x} + E(t, x, u, v) \frac{\partial}{\partial u} + F(t, x, u, v) \frac{\partial}{\partial v}, \quad (2)$$

где A(t,x,u,v), B(t,x,u,v), E(t,x,u,v), F(t,x,u,v) — произвольные гладкие функции - координаты на гладком векторном многообразии.

$$\begin{cases}
f_1 = u_{1,0} + u_{0,1} + h(v_{0,0})u_{0,0}, \\
f_2 = v_{1,0} - h(v_{0,0})u_{0,0}.
\end{cases}$$
(3)

$$e = \{ f_1 = 0, f_2 = 0 \} \subset J^1(\mathbb{R}^2 \to \mathbb{R}^2)$$
$$\left(\Phi_{\tau}^{(1)}\right)^* (f_i) = \lambda_{i1}^{\tau} f_1 + \lambda_{i2}^{\tau} f_2, \tag{4}$$

$$\frac{d}{d\tau}\Big|_{\tau=0} \left(\Phi_{\tau}^{(1)}\right)^* (f_i) = \frac{d\lambda_{i1}^{\tau}}{d\tau}\Big|_{\tau=0} f_1 + \frac{d\lambda_{i2}^{\tau}}{d\tau}\Big|_{\tau=0} f_2 = h_1 f_1 + h_2 f_2$$
 (5)

$$L_{X^{(1)}}(f_i) = h_1 f_1 + h_2 f_2 = X^{(1)}(f_i)$$
(6)

$$X^{(1)}(f_i)\Big|_{\mathcal{L}} = 0 \tag{7}$$

4/10

Мухина С.С. Лаборатория №6

```
(-h(v)^2(A(t,x,u,v))_uu^2 + h(v)^2(A(t,x,u,v))_vu^2 - (E(t,x,u,v))_uh(v)u + h(v)^2(A(t,x,u,v))_vu^2 + h(v)^2(A(t,x,u,v))
 +(E(t,x,u,v))_{v}h(v)u+h(v)(A(t,x,u,v))_{t}u+(A(t,x,u,v))_{x}h(v)u+
+F(t,x,u,v)u\dot{h}(v) + E(t,x,u,v)h(v) + (E(t,x,u,v))_t + (E(t,x,u,v))_x = 0,
 -h(v)((A(t,x,u,v))_u + (A(t,x,u,v))_v)u + h(v)((B(t,x,u,v))_u -
 -(B(t,x,u,v))_v)u + (A(t,x,u,v))_t - (B(t,x,u,v))_t +
 +(A(t,x,u,v))_x - (B(t,x,u,v))_x = 0.
h(v)(A(t, x, u, v))_v u + (E(t, x, u, v))_v = 0.
(A(t, x, u, v))_v - (B(t, x, u, v))_v = 0,
h(v)^2 ((A(t,x,u,v))_u - (A(t,x,u,v))_v) u^2 - h(v)((A(t,x,u,v))_t -
 -(F(t,x,u,v))_u)u + h(v)(F(t,x,u,v))_vu - F(t,x,u,v)u\dot{h}(v)u -
 -E(t, x, u, v)h(v) + (F(t, x, u, v))_t = 0,
h(v)(A(t, x, u, v))_{u}u - (F(t, x, u, v))_{u} = 0.
h(v)(B(t, x, u, v))_{u}u - (B(t, x, u, v))_{v}h(v)u - (B(t, x, u, v))_{t} = 0.
(B(t, x, u, v))_{u} = 0.
```

Мухина С.С. Лаборатория

$$\ddot{h}(v)\left(\ddot{B}(x)v - \dot{f}_0(x)\right) = 0. \tag{8}$$

- 1. h(v) = 0, следовательно, h(v) линейно,
- 2. $\hat{h}(v) \neq 0$, следовательно, $\hat{B}(x)v \hat{f}_0(x) = 0$

$$h(v) = h_1 v + h_2 \tag{9}$$

$$X_{1} = (B(x) + a(x-t))\frac{\partial}{\partial t} + B(x)\frac{\partial}{\partial x} + a_{x}(x-t)u\frac{\partial}{\partial u} - \left(\frac{\dot{B}(x)(h_{1}v + h_{2})}{h_{1}}\right)\frac{\partial}{\partial v}.$$
(10)

$$h(v) = (E_0 v - b_1 v + f_0)^{-\frac{b_1}{-b_1 + E_0}}$$
(11)

$$X_{2} = (b_{1}t + a(x - t))\frac{\partial}{\partial t} + (b_{1}x + b_{0})\frac{\partial}{\partial x} + ((a_{x}(x - t) + E_{0} - b_{1})u)\frac{\partial}{\partial u} + ((E_{0} - b_{1})v + f_{0})\frac{\partial}{\partial v}.$$
 (12)

Мухина С.С. Лаборатория №6

Теорема 1 Пусть функция h имеет вид $h(v)=k(\alpha v+\beta)^{\delta}$ для некоторых постоянных α,β,δ,k .

Если δ не равно нулю и единице, то система (1) обладает алгеброй Ли симметрий, порожденной векторными полями

$$\frac{\partial}{\partial x}, \quad -\delta\alpha\left(t\frac{\partial}{\partial t} + x\frac{\partial}{\partial x}\right) + \alpha u\frac{\partial}{\partial u} + (\alpha v + \beta)\frac{\partial}{\partial v}, \quad A(x-t)\frac{\partial}{\partial t} + uA'(x-t)\frac{\partial}{\partial u}.$$

Если $\delta=k=1$, то алгебра Ли симметрий порождена векторными полями

$$\frac{\partial}{\partial x}$$
, $A(x-t)\frac{\partial}{\partial t} + uA'(x-t)\frac{\partial}{\partial u}$, $B(x)\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) - (v + \alpha^{-1}\beta)B'(x)\frac{\partial}{\partial v}$.

Здесь A, B — произвольные функции класса C^{∞} .

В остальных случаях система (1) обладает симметрией $\frac{\partial}{\partial x}$.

Таким образом, в первых двух случаях алгебра Ли симметрий системы (1) является бесконечномерной.

Мухина С.С. Лаборатория №6

7/10

Построение точного решения

Пусть $\delta = k = 1$. Векторное поле:

$$X = -\alpha t \frac{\partial}{\partial t} - \alpha x \frac{\partial}{\partial x} + \alpha u \frac{\partial}{\partial u} + (\alpha v + \beta) \frac{\partial}{\partial v}$$
 (13)

Первый интеграл:

$$J(t, x, u, v) = G\left(\frac{x}{t}, ut, \frac{(\alpha v + \beta)t}{\alpha}\right)$$
(14)

$$u(t,x) = \frac{U\left(\frac{x}{t}\right)}{t}, v(t,x) = \frac{V\left(\frac{x}{t}\right)}{t} - \frac{\beta}{\alpha}$$
 (15)

8/10

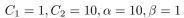
$$\begin{cases} \alpha(-U(z) - D(U)(z)z + D(U)(z) + V(z)\alpha U(z) = 0, \\ -\alpha V(z) - \alpha D(V)(z)z - \alpha^2 V(z)U(z) = 0, \end{cases}$$
(16)

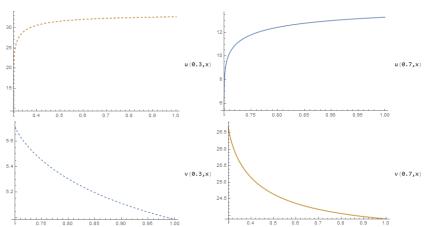
Решения:

$$u(t,x) = \frac{C_1 C_2(\frac{x-t}{t})^{C_1}}{\alpha(x-t)(C_2(\frac{x-t}{t})^{C_1} + \alpha(\frac{x}{t})^{C_1})}, v(t,x) = \frac{C_1(\frac{x}{t})^{C_1-1}}{(C_2(\frac{x-t}{t})^{C_1} + \alpha(\frac{x}{t})^{C_1})t} - \frac{\beta}{\alpha},$$

где C_1, C_2 - произвольные постоянные.

Визуализация найденного решения





ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ПРОБЛЕМ УПРАВЛЕНИЯ ИМ. В. А. ТРАПЕЗНИКОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

Доклад на тему:

РАЦИОНАЛЬНОЕ РАЗМЕЩЕНИЕ ГАЗОВЫХ СКВАЖИН

А.Р. Латипов, С.А. Пучковский

КРИТЕРИИ РАЦИОНАЛЬНОГО РАЗМЕЩЕНИЯ СКВАЖИН

Под рациональным размещением забоев добывающих скважин понимается такое расположение, которое обеспечивает:

- А) максимально возможное приближение скважин к участкам пласта, имеющим большие значения продуктивности (эффективности).
- Б) как можно меньшее расстояние скважин до любой точки пласта и примерное равенство областей дренирования скважин.
- B)

РАЗМЕЩЕНИЕ СКВАЖИН НА ГАЗОВОЙ ЗАЛЕЖИ

- Рассматривается залежь произвольной формы, заданная двумерной областью, состоящей из *п* блоков.
- Исходя из критериев A, Б, B, ... определить s блоков, содержащих добывающие скважины, где s количество скважин, s < n,
- n/s целое число.

 c_{ij} — «взвешенное» расстояние от і-го блока до ј-го («штраф»):

$$c_{ij} \equiv \begin{cases} \left(\lambda_{j}\right)^{1-\gamma} \cdot \left(r_{ij}\right)^{\gamma}, & i \neq j \\ 0, & i = j \end{cases}$$
$$i, j = 1 \dots n, \gamma \in [0,1]$$

где: $\lambda_j \equiv \frac{v_j}{v_{max}} \quad \text{нормированные запасы j-го блока}$ $r_{ij} \equiv \frac{R_{ij}}{R_{max}} \quad \text{нормированное расстояние от i-го блока}$ до j-го $\gamma \quad \text{экспертная оценка важности показателя}$ R - «расстояния» по отношению к показателю λ - «запасы»

РАЗМЕЩЕНИЕ СКВАЖИН НА ГАЗОВОЙ ЗАЛЕЖИ

Искомые переменные:

• x_{ij} : $x_{ij} = 1$, если ј-й блок входит в область влияния скважины, находящейся в і-м блоке, и $x_{ij} = 0$ в ином случае. $x_{ii} = 1$, если в і-м блоке есть скважина, иначе $x_{ii} = 0$.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min_{x}$$

$$\sum_{i=1}^{n} x_{ii} = s$$

$$\sum_{i=1}^{n} x_{ij} = 1, \qquad j = \overline{1, n}$$

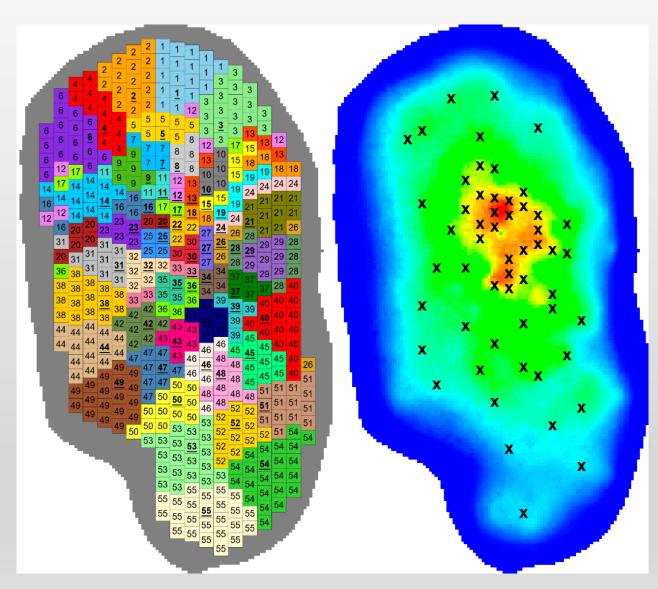
$$\sum_{j=1}^{n} x_{ij} = (n/s)x_{ii}, \qquad i = \overline{1, n}$$

$$x_{ij} \in \{0,1\}, i = \overline{1,n}, j = \overline{1,n}$$

Критерий оптимальности:

- → Суммарный штраф должен быть минимизирован (суммарный штраф – это штраф за нарушение правил рациональной расстановки скважин)
- → Должно быть размещено заданное число скважин
- → Каждый блок должен принадлежать только одной области влияния
- → Каждая область влияния должна содержать одинаковое число блоков

СРАВНЕНИЕ РЕЗУЛЬТАТОВ



Прошлый результат

Текущий результат

МОДИФИКАЦИЯ ЗАДАЧИ

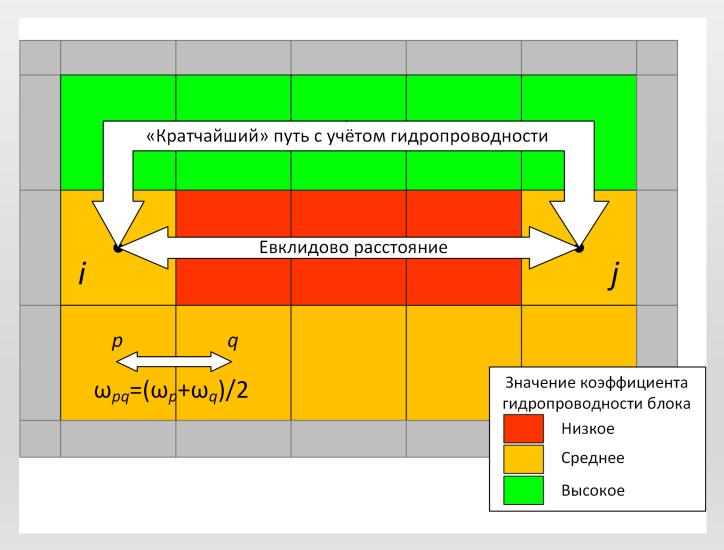
Что изменилось:

	$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min_{x}$	\rightarrow	Критерий оптимальности: Минимизация штрафа за нарушение условий рационального размещения скважин
+	$\sum_{i=1}^n \sum_{j=1}^n R_{ij} x_{ij} \to \min_{x}$	\rightarrow	Минимизация числа «чужих» блоков в зонах влияния скважин
	$\sum_{i=1}^{n} x_{ii} = s$	\rightarrow	Должно быть размещено заданное число скважин
	$\sum_{\substack{i=1\\n}}^{n} x_{ij} = 1, \qquad j = \overline{1,n}$	\rightarrow	Каждый блок должен принадлежать только одной области влияния
-	$\sum_{j=1}^{n} x_{ij} = (n/s)x_{ii}, \qquad i = \overline{1,n}$	\rightarrow	Каждая область влияния должна содержать одинаковое число блоков
+	$\left(\sum_{j=1}^{n} V_{j} x_{ij} - \frac{V}{s}\right)^{2} \cdot x_{ii} \leq \varepsilon V_{max}^{2}$	\rightarrow	Запасы каждой скважины не должны отличаться от равномерного распределения более, чем на заданную величину
+	$\sum_{i=1}^{n} \sum_{j=1}^{n} V_j \cdot x_{ij} \cdot x_{ii} = V$	\rightarrow	Все запасы газа должны быть распределены между скважинами

РАЗДЕЛЕНИЕ ЗАДАЧИ

Первая задача:	Во второй задаче добавляется:		
$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min_{x}$	**		
	$\sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij} x_{ij} \to \min_{x}$		
$\sum_{i=1}^{n} x_{ii} = s$			
$\sum_{i=1}^{n} x_{ij} = 1, \qquad j = \overline{1, n}$			
	$x_{ii} = 1, i = \{i_1^*, i_2^*, \dots, i_{s-1}^*, i_s^*\}$	i_s^* — номер блока со скважиной.	
$\left(\sum_{j=1}^{n} V_{j} x_{ij} - \frac{V}{s}\right)^{2} \cdot x_{ii} \leq \varepsilon V_{max}^{2}$			
$\sum_{i=1}^{n} \sum_{j=1}^{n} V_j \cdot x_{ij} \cdot x_{ii} = V$	**		

МЕТОД ПЕРЕСЧЕТА ШТРАФНЫХ КОЭФФИЦИЕНТОВ С УЧЕТОМ ОСОБЕННОСТЕЙ ПЛАСТА



МЕТОД ПОТЕНЦИАЛОВ

$$\sum_{i=1}^{s} \sum_{j=1}^{n} c_{ij} x_{ij} \to min, \tag{1}$$

$$\sum_{i=1}^{s} x_{ij} = 1, \qquad j = \overline{1, n}$$
 (2)

$$\sum_{j=1}^{n} x_{ij} = \frac{n}{s}, \quad i = \overline{1, s}$$

$$x_{ij} \in \{0, 1\}, i = \overline{1, s}$$
(4)

$$i \in \{0,1\}, i = 1, s$$
 (4)

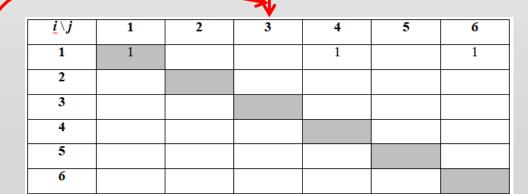
МЕТОД ВЕТВЕЙ И ГРАНИЦ

 x_{ij} :

 $c_{ij}>0$ по определению

<u>i</u> \j	1	2	3	4	5	6
1	1	1	1			
2						
3						
4				1	1	1
5						
6						

Задаем начальное размещение, дающее пороговое значение h_0



Начинаем ветвление по диагонали и рассматриваем всевозможные варианты расстановки оставшихся ($\left\lceil \frac{n}{s} \right\rceil - 1$) единиц

ĩ /J	1	2	3	4	9	0
1	1			1		1
2		1	1		1	
3						
4						
5						
6						

 $h \ge h_0 \, - \,$ дальше не рассматриваем эту ветвь

 $h < h_0$ — продолжаем ветвление по диагонали

МЕТОД ШТРАФНЫХ КОЭФФИЦИЕНТОВ

Исходная постановка:	Преобразования:	Новая постановка:
$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to min$	$c_{ijt} = c_{ij} - \beta_{it} a_{ij}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ijt} x_{ijt} \to \min_{x}$
$\sum_{j=1}^{n} x_{ij} = kx_{ii}, \qquad i = \overline{1, n}$	$a_{ij} = \begin{cases} 1, & i \neq j \\ -(k-1), & i = j \end{cases}$	$\sum_{j=1}^{n} a_{ij} x_{ijt} \ge 0, \qquad i = \overline{1, n}$
$\sum_{i=1}^{n} x_{ij} = 1, \qquad j = \overline{1, n}$	$\beta_{it} \ge 0$	$\sum_{i=1}^{n} x_{ijt} = 1, \qquad j = \overline{1, n}$
$x_{ij} \in \{0,1\}, i = \overline{1,n}, j = \overline{1,n}$		$x_{ijt} \in \{0,1\}, i = \overline{1,n}, j = \overline{1,n}$

МЕТОД ШТРАФНЫХ КОЭФФИЦИЕНТОВ

Способы назначения штрафных коэффициентов

Постепенное уменьшение шага:

$$eta_{it+1} = \max \left\{ 0, eta_{it} - heta_{t+1} \left(\sum_{j=1}^n a_{ij} x_{ijt}
ight)
ight\}, \qquad eta_{it} = 0$$
 — левая часть ограничения будет меньше 0; $eta_{it} = eta = \frac{\max\{c_{ij}\}}{k-1}$ — левая часть каждого ограничения будет больше 0. $\lim_{t o \infty} heta_t = 0$

Метод деления отрезка пополам:

$$eta_{it} = 0$$
 - левая часть ограничения будет меньше 0;

$$eta_{it} = eta = rac{\max\{c_{ij}\}}{k-1}$$
 - левая часть каждого ограничения будет больше 0.

СПАСИБО ЗА ВНИМАНИЕ!

Магнитная Гидродинамика: термодинамика и динамические уравнения

Рябушев Е.А.Институт проблем Управления им. В.А. Трапезникова Российской Академии Наук

Магнитная гидродинамика

- •Течение проводящей жидкости в электромагнитном поле
- •Удержание плазмы в магнитных ловушках различных типов (открытых и закрытых)
- •Устойчивость равновесного состояния плазмы

Термодинамика и контактная геометрия

- •Вещество описывается экстенсивными и интенсивными величинами
- •Термодинамическое состояние задается как многообразие в фазовом пространстве
- •Термодинамические симметрии и квадратность энергии приводят к уравнениям состояния.
- •Неравновесной термодинамики открывает путь к определению кинетических коэффициентов.

Геометрия уравнений динамики

- •Динамика записывается в инвариантных терминах на произвольном многообразии
- •Это позволяет исследовать поведение системы в различных областях трехмерного пространства
- К динамическим уравнениям применяется редукция по её симметриям
- •Исходная система уравнений записывается в терминах дифференциальных инвариантов